J Biomed Mater Res B Appl Biomater
September 2024
The aim of this study was to develop multifunctional magnetic poly(ε-caprolactone) (PCL) mats with antibacterial properties for bone tissue engineering and osteosarcoma prevention. To provide good dispersion of magnetic iron oxide nanoparticles (IONs), they were first grafted with PCL using a novel three-step approach. Then, a series of PCL-based mats containing a fixed amount of ION@PCL particles and an increasing content of ascorbic acid (AA) was prepared by electrospinning.
View Article and Find Full Text PDFFibrotic changes in pediatric clubfoot provide an opportunity to improve corrective therapy and prevent relapses with targeted drugs. This study defines the parameters of clubfoot fibrosis and presents a unique analysis of a simple pseudo-3D model for disease-specific high-throughput drug screening experiments. The model combines clubfoot-derived fibroblasts with a biomimetic cultivation environment induced by the water-soluble polymers Ficoll and Polyvinylpyrrolidone, utilizing the principle of macromolecular crowding.
View Article and Find Full Text PDFPulmonary hypertension is a cardiovascular disease with a low survival rate. The protein galectin-3 (Gal-3) binding β-galactosides of cellular glycoproteins plays an important role in the onset and development of this disease. Carbohydrate-based drugs that target Gal-3 represent a new therapeutic strategy in the treatment of pulmonary hypertension.
View Article and Find Full Text PDFDiamond-like carbon (DLC) layers are known for their high corrosion and wear resistance, low friction, and high biocompatibility. However, it is often necessary to dope DLC layers with additional chemical elements to strengthen their adhesion to the substrate. Ti-DLC layers (doped with 0.
View Article and Find Full Text PDFBurn injuries are a significant global health concern, with more than 11 million people requiring medical intervention each year and approximately 180,000 deaths annually. Despite progress in health and social care, burn injuries continue to result in socioeconomic burdens for victims and their families. The management of severe burn injuries involves preventing and treating burn shock and promoting skin repair through a two-step procedure of covering and closing the wound.
View Article and Find Full Text PDFSkin wound healing is a complex physiological process that involves various cell types, growth factors, cytokines, and other bioactive compounds. In this study, a novel dual-function multilayered nanofibrous membrane is developed for chronic wound application. The membrane is composed of five alternating layers of polycaprolactone (PCL) and poly (vinyl alcohol) (PVA) nanofibers (PCL-PVA) with a dual function: the PCL nanofibrous layers allow cell adhesion and growth, and the PVA layers enriched with incorporated platelet lysate (PCL-PVA + PL) serve as a drug delivery system for continuous release of bioactive compounds from PL into an aqueous environment.
View Article and Find Full Text PDFScaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part).
View Article and Find Full Text PDFOne of the major goals of vascular tissue engineering is to develop much-needed materials that are suitable for use in small-diameter vascular grafts. Poly(1,8-octamethylene citrate) can be considered for manufacturing small blood vessel substitutes, as recent studies have demonstrated that this material is cytocompatible with adipose tissue-derived stem cells (ASCs) and favors their adhesion and viability. The work presented here is focused on modifying this polymer with glutathione (GSH) in order to provide it with antioxidant properties, which are believed to reduce oxidative stress in blood vessels.
View Article and Find Full Text PDFMajor challenges facing clinicians treating burn wounds are the lack of integration of treatment to wound, inadequate mechanical properties of treatments, and high infection rates which ultimately lead to poor wound resolution. Electrospun chitosan membranes (ESCM) are gaining popularity for use in tissue engineering applications due to their drug loading ability, biocompatibility, biomimetic fibrous structure, and antimicrobial characteristics. This work aims to modify ESCMs for improved performance in burn wound applications by incorporating elastin and magnesium-phosphate particles (MgP) to improve mechanical and bioactive properties.
View Article and Find Full Text PDFBiomater Adv
April 2022
Osteochondral defects remain a huge problem in medicine today. Biomimetic bi- or multi-phasic scaffolds constitute a very promising alternative to osteochondral autografts and allografts. In this study, a new curdlan-based scaffold was designed for osteochondral tissue engineering applications.
View Article and Find Full Text PDFThe present study investigates the effect of an oxidized nanocrystalline diamond (O-NCD) coating functionalized with bone morphogenetic protein 7 (BMP-7) on human osteoblast maturation and extracellular matrix mineralization in vitro and on new bone formation in vivo. The chemical structure and the morphology of the NCD coating and the adhesion, thickness and morphology of the superimposed BMP-7 layer have also been assessed. The material analysis proved synthesis of a conformal diamond coating with a fine nanostructured morphology on the Ti6Al4V samples.
View Article and Find Full Text PDFBackground: Cardiovascular surgery is confronted by a lack of suitable materials for patch repair. Acellular animal tissues serve as an abundant source of promising biomaterials. The aim of our study was to explore the bio-integration of decellularized or recellularized pericardial matrices in vivo.
View Article and Find Full Text PDFOur aim was to study the expression of hypoxia-related proteins as a possible regulatory pathway in the contracted side tissue of relapsed clubfoot. We compared the expression of hypoxia-related proteins in the tissue of the contracted (medial) side of relapsed clubfoot, and in the tissue of the non-contracted (lateral) side of relapsed clubfoot. Tissue samples from ten patients were analyzed by immunohistochemistry and image analysis, Real-time PCR and Mass Spectrometry to evaluate the differences in protein composition and gene expression.
View Article and Find Full Text PDFCollagen, as the main component of connective tissue, is frequently used in various tissue engineering applications. In this study, porous sponge-like collagen scaffolds were prepared by freeze-drying and were then mineralized in a simulated body fluid. The mechanical stability was similar in both types of scaffolds, but the mineralized scaffolds (MCS) contained significantly more calcium, magnesium and phosphorus than the unmineralized scaffolds (UCS).
View Article and Find Full Text PDFCongenital clubfoot is a complex musculoskeletal deformity, in which a stiff, contracted tissue forms in the medial part of the foot. Fibrotic changes are associated with increased collagen deposition and lysyl oxidase (LOX)-mediated crosslinking, which impair collagen degradation and increase the tissue stiffness. First, we studied collagen deposition, as well as the expression of collagen and the amount of pyridinoline and deoxypyridinoline crosslinks in the tissue of relapsed clubfoot by immunohistochemistry, real-time PCR, and enzyme-linked immunosorbent assay (ELISA).
View Article and Find Full Text PDFBiological hydrogels are highly promising materials for bone tissue engineering (BTE) due to their high biocompatibility and biomimetic characteristics. However, for advanced and customized BTE, precise tools for material stabilization and tuning material properties are desired while optimal mineralisation must be ensured. Therefore, reagent-free crosslinking techniques such as high energy electron beam treatment promise effective material modifications without formation of cytotoxic by-products.
View Article and Find Full Text PDFDue to its nanostructure, bacterial nanocellulose (BC) has several advantages over plant cellulose, but it exhibits weak cell adhesion. To overcome this drawback, we studied the drying method of BC and subsequent argon plasma modification (PM). BC hydrogels were prepared using the (ATCC 700178) bacteria strain.
View Article and Find Full Text PDFHerein, a renewed prominence towards the synthesis of poly(alkylene citrate) (PAC) biomaterials and their detailed chemical, structural and mechanical characterization has been reported. Based on the modifications to the PAC synthesis protocol introduced in this study, the fabrication process was significantly streamlined, the reaction yields were increased, and the homogeneity of the final materials was found to be substantially improved. Comprehensive nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) studies of the fabricated prepolymers shed light on the mechanism of the PAC cross-linking process and supported the design of materials with enhanced biocompatibility.
View Article and Find Full Text PDFBackground: The volume effect of fat grafting is highly dependent on the presence of viable adipocytes and other nucleated cells within the lipoaspirate. We suspected that one of the crucial factors influencing cell viability is the negative pressure applied during the fat graft harvesting and the suitability of various harvest sites when compared to others. Despite much discussion, there is no consensus on the optimal negative pressure or the best site for harvesting so we designed an experiment to test this.
View Article and Find Full Text PDFGalectin-3 (Gal-3) is a β-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering.
View Article and Find Full Text PDFPlatelet lysate (PL) provides a natural source of growth factors and other bioactive molecules, and the local controlled release of these bioactive PL components is capable of improving the healing of chronic wounds. Therefore, we prepared composite nanofibrous meshes via the needleless electrospinning technique using poly(vinyl alcohol) (PVA) with a high molecular weight and with a high degree of hydrolysis with the incorporated PL (10% ). The morphology, wettability and protein release from the nanofibers was then assessed from the resulting composite PVA-PL nanomats.
View Article and Find Full Text PDFBackground: An understanding of fat grafting methodology, techniques and patient-related factors is crucial when considering fat grafting. Multiple factors can influence the success of a fat graft and consequently the outcome of the procedure. The aim of this systematic review is to elucidate the influence of negative pressure and various techniques of fat harvesting on the viability and function of cells, particularly adipocytes and adipose-derived stem cells.
View Article and Find Full Text PDF