Publications by authors named "Lucie Aumailley"

Recent advances in mass spectrometry have indicated that the water-soluble antioxidant vitamin C differentially modulates the abundance of various proteins in the hepatic tissue of female and male mice. In this study, we performed LC-MS/MS to identify and quantify proteins that correlate with serum vitamin C concentrations in the whole brain, heart, liver, and spleen tissues in mice deficient for the enzyme L-Gulonolactone oxidase required for vitamin C synthesis in mammals. This work shows for the first time that various biological processes affected by a vitamin C deficiency are not only sex specific dependent but also tissue specific dependent even though many proteins have been identified and quantified in more than three organs.

View Article and Find Full Text PDF

Werner syndrome (WS) is a progeroid disorder caused by mutations in a protein containing both a DNA exonuclease and DNA helicase domains. Previous studies indicated that males lacking the helicase domain of the Wrn protein orthologue exhibited hepatic transcriptomic and metabolic alterations. In this study, we used a label-free liquid chromatography-tandem mass spectrometry approach to uncover proteins abundance associated with specific biological processes that differed depending on the age (four or ten months) and/or the genotype (wild type or Wrn mutant) in the serum and liver of mice.

View Article and Find Full Text PDF

Background: Vitamin C (ascorbate) is a water-soluble antioxidant and an important cofactor for various biosynthetic and regulatory enzymes. Mice can synthesize vitamin C thanks to the key enzyme gulonolactone oxidase (Gulo) unlike humans. In the current investigation, we used Gulo mice, which cannot synthesize their own ascorbate to determine the impact of this vitamin on both the transcriptomics and proteomics profiles in the whole liver.

View Article and Find Full Text PDF

Ascorbate is a crucial antioxidant and essential cofactor of biosynthetic and regulatory enzymes. Unlike humans, mice can synthesize ascorbate thanks to the key enzyme gulonolactone oxidase (Gulo). In the present study, we used the Gulo mouse model, which cannot synthesize their own ascorbate to determine the impact of this vitamin on the liver proteome of specific subcellular organelles.

View Article and Find Full Text PDF

A suboptimal blood vitamin C (ascorbate) level increases the risk of several chronic diseases. However, the detection of hypovitaminosis C is not a simple task, as ascorbate is unstable in blood samples. In this study, we examined the serum proteome of mice lacking the gulonolactone oxidase (Gulo) required for the ascorbate biosynthesis.

View Article and Find Full Text PDF

Werner syndrome (WS) is a rare autosomal recessive malady typified by a pro-oxidant/proinflammatory status, genetic instability, and by the early onset of numerous age-associated illnesses. The protein malfunctioning in WS individuals (WRN) is a helicase/exonuclease implicated in transcription, DNA replication/repair, and telomere maintenance. In the last two decades, a series of important biological systems were created to comprehend at the molecular level the effect of a defective WRN protein.

View Article and Find Full Text PDF

Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase, WRN. Mice lacking part of the helicase domain of the WRN orthologue exhibit many phenotypic features of WS, including metabolic abnormalities and a shorter lifespan. Yet, little is known about the impact of WRN mutations on the central nervous system in both humans and mouse models of WS.

View Article and Find Full Text PDF

Werner syndrome (WS) is a premature aging disorder caused by mutations in a protein containing both a DNA exonuclease and DNA helicase domain. Mice lacking the helicase domain of the Wrn protein orthologue exhibit transcriptomic and metabolic alterations, some of which are reversed by vitamin C. Recent studies on these animals indicated that the mutant protein is associated with enriched endoplasmic reticulum (ER) fractions of tissues resulting in an ER stress response.

View Article and Find Full Text PDF

Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase (WRN). Mice lacking part of the helicase domain of the WRN ortholog exhibit several phenotypic features of WS. In this study, we generated a Wrn mutant line that, like humans, relies entirely on dietary sources of vitamin C (ascorbate) to survive, by crossing them to mice that lack the gulonolactone oxidase enzyme required for ascorbate synthesis.

View Article and Find Full Text PDF

Suboptimal intake of dietary vitamin C (ascorbate) increases the risk of several chronic diseases but the exact metabolic pathways affected are still unknown. In this study, we examined the metabolic profile of mice lacking the enzyme gulonolactone oxidase (Gulo) required for the biosynthesis of ascorbate. Gulo-/- mice were supplemented with 0%, 0.

View Article and Find Full Text PDF

Werner syndrome (WS) is a premature aging disorder caused by mutations in a DNA helicase/exonuclease. Mice lacking the helicase domain of this protein exhibit metabolic abnormalities that are reversed by vitamin C. In this study, we used a targeted metabolomic approach to identify serum metabolites significantly altered in young mutant mice treated with or without vitamin C.

View Article and Find Full Text PDF

Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase, WRN. Mice lacking part of the helicase domain of the WRN orthologue exhibit many phenotypic features of WS, including metabolic abnormalities and a shorter mean life span. In contrast, mice lacking the entire Wrn protein (i.

View Article and Find Full Text PDF

Dunaliella tertiolecta (DT) was chemically investigated to isolate molecules inhibiting cancer cell proliferation and inducing apoptosis in vitro. The potency to inhibit cell growth was used for the bio-guided fractionation and isolation of active compounds using chromatographic techniques. The DT dichloromethane extract exhibited a strong anti-proliferative activity on MCF-7 and LNCaP cells, and was further fractionated and sub-fractionated by RP-HPLC.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionniu68566qme5eaarb500gkah3s2l7gis): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once