Publications by authors named "Luciano do Amarante"

The ability of plants to recover after stressful events is crucial for resuming growth and development and is a key trait when studying stress tolerance. However, there is a lack of information on the physiological responses and the time required to restore homeostasis after the stress experience. This study aimed to (i) enhance understanding of soybean photosynthesis performance during saline waterlogging and (ii) investigate the effects of this combined stress during the reoxygenation and recovery period.

View Article and Find Full Text PDF

Clomazone is known to contaminate aquatic environments and have a negative impact on macrophytes. However, recent reports suggests that Pontederia crassipes Mart. can withstand clomazone exposure while maintaining growth rates.

View Article and Find Full Text PDF

Priming enables plants to respond more promptly, minimise damage, and survive subsequent stress events. Here, we aimed to assess the efficacy of priming and cross-priming in mitigating the stress caused by waterlogging and/or dehydration in soybeans (Glycine max ). Soybean plants were cultivated in a greenhouse in plastic pots in which soil moisture was maintained at pot capacity through irrigation.

View Article and Find Full Text PDF
Article Synopsis
  • Saline and wet environments cause significant stress to most plants, leading to decreased growth and yield due to osmotic, ionic, and oxidative challenges.
  • Halophytes are specially adapted plants that manage these stresses through mechanisms like ion regulation, energy maintenance, and antioxidants, allowing them to thrive in harsh conditions.
  • Understanding how halophytes function can help in developing resilient crops, which is essential for coping with the impacts of climate change and improving agricultural productivity in challenging environments.
View Article and Find Full Text PDF

Background: Crop yields have been affected by many different biotic and abiotic factors. Generally, plants experience more than one stress during their life cycle, and plants can tolerate multiple stresses and develop cross-tolerance. The expected rise in atmospheric CO concentration ([CO]) can contribute to cross-tolerance.

View Article and Find Full Text PDF

Nitrate (NO3 - ) nutrition is known to mitigate the damages caused by individual stresses of waterlogging and salinity. Here, we investigated the role of NO3 - in soybean plants exposed to these stresses in combination. Nodulated soybean cultivated under greenhouse conditions and daily fertilised with a nutrient solution without nitrogen were subjected to the following treatments: Water, NO3 - , NaCl, and NaCl+NO3 - .

View Article and Find Full Text PDF

In this study, we tested whether waterlogging priming at the vegetative stage would mitigate a subsequent waterlogging event at the reproductive stage in soybean [Glycine max (L.) Merr.].

View Article and Find Full Text PDF

Iron toxicity is a major challenge faced by plants in hypoxic soils; however, the consequences of such combined stress for soybean (Glycine max) remain to be determined. Here we assessed the physiological responses of soybean plants exposed to hypoxia and a high concentration of iron. Soil-grown plants cultivated in a greenhouse until the vegetative stage were transferred to a hydroponic system containing nutrient solution and subjected to two oxygen conditions (normoxia (6.

View Article and Find Full Text PDF

This study aimed to evaluate the silicon (Si) capacity to attenuate the cadmium (Cd) effects on seed germination and seedling performance of lettuce. The seeds were subjected to three priming levels: without priming, hydropriming, and Si priming. Afterwards, the seeds were placed to germinate on paper moistened with the absence (0 mM) and presence (1 mM) of Cd.

View Article and Find Full Text PDF

A substantial increase in malate in the xylem sap of soybean subjected to mineral N starvation originates mainly from aspartate, a prominent amino acid of the phloem. A substantial increase in xylem malate was found when non-nodulated soybean plants were transferred to a N-free medium. Nodulated plants growing in the absence of mineral N and, therefore, dependent on symbiotic N fixation also contained elevated concentrations of malate in the xylem sap.

View Article and Find Full Text PDF