Fascioliasis is a food-borne parasitic disease that affects a range of animals, including humans caused by Fasciola hepatica. The present study aimed to determine the spatial distribution of bovine fasciolosis and to assess the correlation between the high Positivity Index (PI) and climate data and land altitude, from 2004 to 2008 and 2010 in Santa Catarina (SC), Brazil. Condemned livers of slaughtered animals were obtained from 198 out of 293 municipalities and from 518.
View Article and Find Full Text PDFFasciola hepatica is the causative agent of fasciolosis, a disease that triggers a chronic inflammatory process in the liver affecting mainly ruminants and other animals including humans. In Brazil, F. hepatica occurs in larger numbers in the most Southern state of Rio Grande do Sul.
View Article and Find Full Text PDFPesqui Agropecu Bras
September 2012
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade.
View Article and Find Full Text PDFGeographic Information Systems (GISs) are composed of useful tools to map and to model the spatial distribution of events that have geographic importance as schistosomiasis. This paper is a review of the use the indicator kriging, implemented on the Georeferenced Information Processing System (SPRING) to make inferences about the prevalence of schistosomiasis and the presence of the species of Biomphalaria, intermediate hosts of Schistosoma mansoni, in areas without this information, in the Minas Gerais State, Brazil. The results were two maps.
View Article and Find Full Text PDFThe impact of intestinal helminths on human health is well known among the population and health authorities because of their wide geographic distribution and the serious problems they cause. Geohelminths are highly prevalent and have a big impact on public health, mainly in underdeveloped and developing countries. Geohelminths are responsible for the high levels of debility found in the younger population and are often related to cases of chronic diarrhea and malnutrition, which put the physical and intellectual development of children at risk.
View Article and Find Full Text PDFSchistosomiasis mansoni is not just a physical disease, but is related to social and behavioural factors as well. Snails of the Biomphalaria genus are an intermediate host for Schistosoma mansoni and infect humans through water. The objective of this study is to classify the risk of schistosomiasis in the state of Minas Gerais (MG).
View Article and Find Full Text PDFGeographical Information System (GIS) is a tool that has recently been applied to better understand spatial disease distributions. Using meteorological, social, sanitation, mollusc distribution data and remote sensing variables, this study aimed to further develop the GIS technology by creating a model for the spatial distribution of schistosomiasis and to apply this model to an area with rural tourism in the Brazilian state of Minas Gerais (MG). The Estrada Real, covering about 1,400 km, is the largest and most important Brazilian tourism project, involving 163 cities in MG with different schistosomiasis prevalence rates.
View Article and Find Full Text PDFGeographical information systems (GIS) are tools that have been recently tested for improving our understanding of the spatial distribution of disease. The objective of this paper was to further develop the GIS technology to model and control schistosomiasis using environmental, social, biological and remote-sensing variables. A final regression model (R(2) = 0.
View Article and Find Full Text PDFThis paper analyses the associations between Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) on the prevalence of schistosomiasis and the presence of Biomphalaria glabrata in the state of Minas Gerais (MG), Brazil. Additionally, vegetation, soil and shade fraction images were created using a Linear Spectral Mixture Model (LSMM) from the blue, red and infrared channels of the Moderate Resolution Imaging Spectroradiometer spaceborne sensor and the relationship between these images and the prevalence of schistosomiasis and the presence of B. glabrata was analysed.
View Article and Find Full Text PDFThis paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed.
View Article and Find Full Text PDFGeostatistics is used in this work to make inferences about the presence of the species of Biomphalaria (B. glabrata, B. tenagophila and/or B.
View Article and Find Full Text PDFThe influence of climate and environmental variables to the distribution of schistosomiasis has been assessed in several previous studies. Also Geographical Information System (GIS), is a tool that has been recently tested for better understanding the spatial disease distribution. The objective of this paper is to further develop the GIS technology for modeling and control of schistosomiasis using meteorological and social variables and introducing new potential environmental-related variables, particularly those produced by recently launched orbital sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Shuttle Radar Topography Mission (SRTM).
View Article and Find Full Text PDFThe aim of this work is to establish a relationship between schistosomiasis prevalence and social-environmental variables, in the state of Minas Gerais, Brazil, through multiple linear regression. The final regression model was established, after a variables selection phase, with a set of spatial variables which contains the summer minimum temperature, human development index, and vegetation type variables. Based on this model, a schistosomiasis risk map was built for Minas Gerais.
View Article and Find Full Text PDF