Publications by authors named "Luciano Kagami"

Bladder cancer is the fourth most common malignancy in men. It can present along the entire continuum of severity, from mild to well-differentiated disease to extremely malignant tumors with low survival rates. Human RAS genes are the most frequently mutated oncogenes in human cancers, and the critical role of aberrant Ras protein function in carcinogenesis is well established.

View Article and Find Full Text PDF

Motivation: The generation of parameter files for molecular dynamics (MD) simulations of small molecules that are suitable for force fields commonly applied to proteins and nucleic acids is often challenging. The ACPYPE software and website aid the generation of such parameter files.

Results: ACPYPE uses OpenBabel and ANTECHAMBER to generate MD input files in Gromacs, AMBER, CHARMM, and CNS formats.

View Article and Find Full Text PDF

The purinergic signaling has drawn attention from academia and more recently from pharmaceutical industries as a potential therapeutic route for cancer treatment, since ATP may act as chemotactic agent and possess in vitro antineoplastic activity. On the other way, adenosine, produced in extracellular medium by ecto-5'-NT, acts as immunosuppressor and is related to neoangiogenesis, vasculogenesis and evasion to the immune system. Consequently, inhibitors of ecto-5'-NT may prevent tumor progression, reducing adenosine concentrations, preventing escape from the host's immune system and slowing cancer's growth.

View Article and Find Full Text PDF

Dihydropyrimidinones (DHPMs) are heterocycles obtained by the multicomponent Biginelli reaction. Recently, new synthetic protocols have allowed us to explore functionalisation at less explored positions of DHPMs, such as the N1 position. In this context, a full literature survey of N1- substituted DHPMs was performed.

View Article and Find Full Text PDF

We provide integrated protein sequence-based predictions via https://bio2byte.be/b2btools/. The aim of our predictions is to identify the biophysical behaviour or features of proteins that are not readily captured by structural biology and/or molecular dynamics approaches.

View Article and Find Full Text PDF

Background: The SARS-CoV-2 virus, the causative agent of COVID-19, consists of an assembly of proteins that determine its infectious and immunological behavior, as well as its response to therapeutics. Major structural biology efforts on these proteins have already provided essential insights into the mode of action of the virus, as well as avenues for structure-based drug design. However, not all of the SARS-CoV-2 proteins, or regions thereof, have a well-defined three-dimensional structure, and as such might exhibit ambiguous, dynamic behaviour that is not evident from static structure representations, nor from molecular dynamics simulations using these structures.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most frequent and aggressive brain tumor in adults and the current treatments only have a modest effect on patient survival. Recent studies show that bozepinib (BZP), a purine derivative, has potential applications in cancer treatment. The aim of this study was to evaluate the effect of BZP against GBM cells, specially concerning the purinergic system.

View Article and Find Full Text PDF

The neglected tropical disease leishmaniasis is still a major public health problem that affects millions of people worldwide. Related to poor-living conditions, this vector-borne disease presents multiple clinical manifestations - from asymptomatic to systemic conditions. The protozoans of the genus Leishmania are the etiologic agents transmitted through the bite of sandflies, the main vectors.

View Article and Find Full Text PDF

Although molecular dynamics encompasses several applications, studies focusing on biomolecular systems are central issues of this research area. Such simulations require the generation of trajectory files, which provide a path for the analysis and interpretation of results with biological significance. However, although several programs have been developed in Python language for the analyses of molecular dynamics (MD) trajectories, they usually require some knowledge of programming languages in order to write or run the scripts using command lines, which certainly hinders the access of MD simulations to many scientists with the necessary biological background to interpret their results.

View Article and Find Full Text PDF

Dihydropyrimidin-2-thiones (DHPMs) are a class of heterocyclic compound which have been intensively investigated mainly due to their anticancer activity as kinesin Eg5 inhibitors. A library of N1 aryl substituted DHPMs were tested against glioma and bladder cancer cell lines. Quantitative structure-activity relationship (QSAR) investigation was performed in order to identify key elements of DHPMs linked with their antiproliferative effect.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy data provides valuable information on the behaviour of proteins in solution. The primary data to determine when studying proteins are the per-atom NMR chemical shifts, which reflect the local environment of atoms and provide insights into amino acid residue dynamics and conformation. Within an amino acid residue, chemical shifts present multi-dimensional and complexly cross-correlated information, making them difficult to analyse.

View Article and Find Full Text PDF

Background: Chagas disease (CD) is a tropical parasitic disease. Although the number of people infected is very high, the only drugs available to treat CD, nifurtimox (Nfx) and benznidazole, are highly toxic, particularly in the chronic stage of the disease. Coumarins are a large class of compounds that display a wide range of interesting biological properties, such as antiparasitic.

View Article and Find Full Text PDF

Leishmaniasis is one of the major neglected tropical diseases in the world and it is considered endemic in 88 countries. This disease is transmitted by a spp. infected sandfly and it may lead to cutaneous or systemic manifestations.

View Article and Find Full Text PDF

For more than 40 years, the fluid mosaic model of cellular membranes has supported our vision of an inert lipid bilayer containing membrane protein receptors that are randomly hit by extracellular molecules to trigger intracellular signaling events. However, the notion that compartmentalized cholesterol- and sphingomyelin-rich membrane microdomains (known as lipid rafts) spatially arrange receptors and effectors to promote kinetically favorable interactions necessary for the signal transduction sounds much more realistic. Despite their assumed importance for the dynamics of ligand-receptor interactions, lipid rafts and biomembranes as a whole remain less explored than the other classes of biomolecules because of the higher variability and complexity of their membrane phases, which rarely provide the detailed atomic-level structural data in X-ray crystallography assays necessary for molecular modeling studies.

View Article and Find Full Text PDF

To speed up the drug-discovery process, molecular dynamics (MD) calculations performed in GROMACS can be coupled to docking simulations for the post-screening analyses of large compound libraries. This requires generating the topology of the ligands in different software, some basic knowledge of Linux command lines, and a certain familiarity in handling the output files. LiGRO-the python-based graphical interface introduced here-was designed to overcome these protein-ligand parameterization challenges by allowing the graphical (non command line-based) control of GROMACS (MD and analysis), ACPYPE (ligand topology builder) and PLIP (protein-binder interactions monitor)-programs that can be used together to fully perform and analyze the outputs of complex MD simulations (including energy minimization and NVT/NPT equilibration).

View Article and Find Full Text PDF

Background: Leishmaniasis reaches millions of people around the world. The control of the disease is difficult due to the restricted access to the diagnosis and medication, and low adherence to the treatment. Thus, more efficient drugs are needed and natural products are good alternatives.

View Article and Find Full Text PDF

Malaria, a tropical parasitic disease caused by Plasmodium spp., continues to place a heavy social burden, with almost 200 million cases and more than 580,000 deaths per year. Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) can be targeted for antimalarial drug design since its inhibition kills malaria parasites both in vitro and in vivo.

View Article and Find Full Text PDF

Background: Guanine phosphoribosyltransferase (GPRT) is a very attractive target for the development of new drugs against G. lamblia because of its critical role in the synthesis of DNA and RNA. Herein we report the use of in silico approaches to identify potential G.

View Article and Find Full Text PDF