Inorganic materials depleted of heavy stable isotopes are known to deviate strongly in some physicochemical properties from their isotopically natural counterparts. Here we explored for the first time the effect of simultaneous depletion of the heavy carbon, hydrogen, oxygen and nitrogen isotopes on the bacterium E. coli and the enzymes expressed in it.
View Article and Find Full Text PDFFast photochemical oxidation of proteins (FPOP) is a MS-based method that has proved useful in studies of protein structures, interactions, conformations, and protein folding. The success of this method relies on the irreversible labeling of solvent-exposed amino acid side chains by hydroxyl radicals. FPOP generates these radicals through laser-induced photolysis of hydrogen peroxide.
View Article and Find Full Text PDFRadionuclides are increasingly used in hospitals for diagnostic and therapeutic purposes, such as functional research, diagnostic imaging, and in the performance of radioiodine therapy. Their use produces radioactive waste, and risks environmental contamination. The present study involves 486 samples of radioactive waste produced in hospitals in Abruzzo, Italy, during 2000 - 2015.
View Article and Find Full Text PDFDespite significant affinity to carbonyl oxygens, thermal hydrogen atoms attach to unmodified polypeptides at a very low rate, while the hydrogen-hydrogen exchange rate is high. Here, using the novel omnitrap setup, we found that attachment to polypeptides is much more facile when radical site is already present, but the rate decreases for larger radical ions. The likely explanation is the intramolecular hydrogen atom rearrangement in hydrogen-deficient radicals to a more stable or less accessible site.
View Article and Find Full Text PDFIn this paper, the first study of cationic cyanine dye Astrazon Orange-R by combined spectroscopic and theoretical investigation is presented. It is shown that molecular modeling of Astrazon Orange-R is in very good agreement with experiment, allowing us to gain insight into its complicated photophysics. A solvent viscosity controlled relaxation of excited states, involving cyanine isomerization, is also outlined.
View Article and Find Full Text PDF2,4-, 2,5-, 2,6- and 3,5-dihydroxyacetophenone (DHA) used as matrices in matrix-assisted ultraviolet laser desorption/ionization mass spectrometry (UV-MALDI-MS) were studied by steady-state and transient absorption spectroscopy, together with DFT calculations at the B3LYP level of theory. All compounds have low fluorescence quantum yields, possibly due to an efficient excited-state intramolecular proton transfer (ESIPT). Laser flash photolysis (LFP) results showed that, only for 2,4-DHA, a phototautomer could be detected at λ = 400 nm.
View Article and Find Full Text PDF