Publications by authors named "Luciano Conti"

Background: The study of neurons is fundamental to unraveling the complexities of the nervous system. Primary neuronal cultures from rodents have long been a cornerstone of experimental studies, yet limitations related to their non-human nature and ethical concerns have prompted the development of alternatives. In recent years, the derivation of neurons from human-induced pluripotent stem cells (hiPSCs) has emerged as a powerful option, offering a scalable source of cells for diverse applications.

View Article and Find Full Text PDF

Schizophrenia (SCZ) is a neuropsychiatric disorder, caused by a combination of genetic and environmental factors. The etiology behind the disorder remains elusive although it is hypothesized to be associated with the aberrant response to neurotransmitters, such as dopamine and glutamate. Therefore, investigating the link between dysregulated metabolites and distorted neurodevelopment holds promise to offer valuable insights into the underlying mechanism of this complex disorder.

View Article and Find Full Text PDF

Background: Although autophagy is a pro-survival process of tumor cells, it can stimulate cell death in particular conditions and when differently regulated by specific signals. We previously demonstrated that the selective stimulation of the M2 muscarinic receptor subtype (mAChR) negatively controls cell proliferation and survival and causes oxidative stress and cytotoxic and genotoxic effects in both GBM cell lines and GBM stem cells (GSCs). In this work, we have evaluated whether autophagy was induced as a downstream mechanism of the observed cytotoxic processes induced by M2 mAChR activation by the orthosteric agonist APE or the dualsteric agonist N8-Iper (N8).

View Article and Find Full Text PDF

Alternative splicing (AS) appears to be altered in Huntington's disease (HD), but its significance for early, pre-symptomatic disease stages has not been inspected. Here, taking advantage of Htt CAG knock-in mouse in vitro and in vivo models, we demonstrate a correlation between Htt CAG repeat length and increased aberrant linear AS, specifically affecting neural progenitors and, in vivo, the striatum prior to overt behavioral phenotypes stages. Remarkably, a significant proportion (36%) of the aberrantly spliced isoforms are not-functional and meant to non-sense mediated decay (NMD).

View Article and Find Full Text PDF

Autosomal dominant leukodystrophy (ADLD) is an ultra-rare, slowly progressive, and fatal neurodegenerative disorder associated with the loss of white matter in the central nervous system (CNS). Several years after its first clinical description, ADLD was found to be caused by coding and non-coding variants in the LMNB1 gene that cause its overexpression in at least the brain of patients. LMNB1 encodes for Lamin B1, a protein of the nuclear lamina.

View Article and Find Full Text PDF

Astrocytes coordinate several homeostatic processes of the central nervous system and play essential roles for normal brain development and response to disease conditions. Protocols for the conversion of human induced pluripotent stem cells (hiPSCs) into mature astrocytes have opened to the generation of systems to explore astrocytes' functions in living human cell contexts and patient-specific settings. In this study, we present an optimized monolayer procedure to commit hiPSC-derived cortical progenitors into enriched populations of cortical astrocyte progenitor cells (CX APCs) that can be further amplified and efficiently differentiated into mature astrocytes.

View Article and Find Full Text PDF

The human brain is the most complex structure generated during development. Unveiling the ontogenesis and the intrinsic organization of specific neural networks may represent a key to understanding the physio-pathological aspects of different brain areas. The cortico-thalamic and thalamo-cortical (CT-TC) circuits process and modulate essential tasks such as wakefulness, sleep and memory, and their alterations may result in neurodevelopmental and psychiatric disorders.

View Article and Find Full Text PDF

Mutations in the SZT2 gene have been associated with developmental and epileptic encephalopathy-18, a rare severe autosomal recessive neurologic disorder, characterized by psychomotor impairment/intellectual disability, dysmorphic facial features and early onset of refractory seizures. Here we report the generation of the first induced pluripotent stem cell (iPSC) lines from a patient with treatment-resistant epilepsy, carrying compound heterozygous mutations in SZT2 (Mut1: c.498G>T and Mut2: c.

View Article and Find Full Text PDF

The advent of intra-nasal esketamine (ESK), one of the first so called , promises to revolutionize the management of treatment resistant depression (TRD). This NMDA receptor antagonist has proven to be rapidly effective in the short- and medium-term course of the illness, revealing its potential in targeting in TRD. Although many TRD ESK responders are able to achieve remission, a considerable portion of them undergo a metamorphosis of their depression into different clinical presentations, characterized by instable responses and high recurrence rates that can be considered closer to the concept of (DTD) than to TRD.

View Article and Find Full Text PDF

Background: Cornelia de Lange syndrome (CdLS) is a rare multisystem genetic disorder which is caused by genetic defects involving the Nipped-B-like protein (NIPBL) gene in the majority of clinical cases (60-70%). Currently, there are no specific cures available for CdLS and clinical management is needed for life. Disease models are highly needed to find a cure.

View Article and Find Full Text PDF

Pediatric and adult high-grade gliomas are the most common primary malignant brain tumors, with poor prognosis due to recurrence and tumor infiltration after therapy. Quiescent cells have been implicated in tumor recurrence and treatment resistance, but their direct visualization and targeting remain challenging, precluding their mechanistic study. Here, we identify a population of malignant cells expressing Prominin-1 in a non-proliferating state in pediatric high-grade glioma patients.

View Article and Find Full Text PDF

About a third of patients with major depressive disorder (MDD) do not have an adequate response to first-line antidepressant treatment, i.e., develop a treatment-resistant depression (TRD).

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is characterized by heterogeneous cell populations. Among these, the Glioblastoma Stem Cells (GSCs) fraction shares some similarities with Neural Stem Cells. GSCs exhibit enhanced resistance to conventional chemotherapy drugs.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) represent an unlimited cell source for the generation of patient-specific dopaminergic (DA) neurons, overcoming the hurdle of restricted accessibility to disease-affected tissue for mechanistic studies on Parkinson's disease (PD). However, the complexity of the human brain is not fully recapitulated by existing monolayer culture methods. Neurons differentiated in a three dimensional (3D) culture system might better mimic the cellular environment for basic mechanistic studies and represent better predictors of drug responses .

View Article and Find Full Text PDF

The recent advent of genome editing techniques and their rapid improvement paved the way in establishing innovative human neurological disease models and in developing new therapeutic opportunities. Human pluripotent (both induced or naive) stem cells and neural stem cells represent versatile tools to be applied to multiple research needs and, together with genomic snip and fix tools, have recently made possible the creation of unique platforms to directly investigate several human neural affections. In this chapter, we will discuss genome engineering tools, and their recent improvements, applied to the stem cell field, focusing on how these two technologies may be pivotal instruments to deeply unravel molecular mechanisms underlying development and function, as well as disorders, of the human brain.

View Article and Find Full Text PDF

Methods for the conversion of human induced pluripotent stem cells (hiPSCs) into motor neurons (MNs) have opened to the generation of patient-derived in vitro systems that can be exploited for MN disease modelling. However, the lack of simplified and consistent protocols and the fact that hiPSC-derived MNs are often functionally immature yet limit the opportunity to fully take advantage of this technology, especially in research aimed at revealing the disease phenotypes that are manifested in functionally mature cells. In this study, we present a robust, optimized monolayer procedure to rapidly convert hiPSCs into enriched populations of motor neuron progenitor cells (MNPCs) that can be further amplified to produce a large number of cells to cover many experimental needs.

View Article and Find Full Text PDF

Matrin3 (MATR3) is a nuclear RNA/DNA-binding protein that plays pleiotropic roles in gene expression regulation by directly stabilizing target RNAs and supporting the activity of transcription factors by modulating chromatin architecture. MATR3 is involved in the differentiation of neural cells, and, here, we elucidate its critical functions in regulating pluripotent circuits in human induced pluripotent stem cells (hiPSCs). MATR3 downregulation affects hiPSCs' differentiation potential by altering key pluripotency regulators' expression levels, including OCT4, NANOG, and LIN28A by pleiotropic mechanisms.

View Article and Find Full Text PDF

Approximately 30% of Major Depressive Disorder (MDD) patients develop treatment-resistant depression (TRD). Among the different causes that make TRD so challenging in both clinical and research contexts, major roles are played by the inadequate understanding of MDD pathophysiology and the limitations of current pharmacological treatments. Nevertheless, the field of psychiatry is facing exciting times.

View Article and Find Full Text PDF

We report the construction of artificial cells that chemically communicate with mammalian cells under physiological conditions. The artificial cells respond to the presence of a small molecule in the environment by synthesizing and releasing a potent protein signal, brain-derived neurotrophic factor. Genetically controlled artificial cells communicate with engineered human embryonic kidney cells and murine neural stem cells.

View Article and Find Full Text PDF

Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program.

View Article and Find Full Text PDF

Glioblastomas (GBM) are the most aggressive form of primary brain tumors in humans. A key feature of malignant gliomas is their cellular heterogeneity. In particular, the presence of an undifferentiated cell population of defined Glioblastoma Stem cells (GSCs) was reported.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most malignant brain tumor. Hypoxic condition is a predominant feature of the GBM contributing to tumor growth and resistance to conventional therapies. Hence, the identification of drugs able to impair GBM malignancy and aggressiveness is considered of great clinical relevance.

View Article and Find Full Text PDF

Silicon is a promising material for tissue engineering since it allows to produce micropatterned scaffolding structures resembling biological tissues. Using specific fabrication methods, it is possible to build aligned 3D network-like structures. In the present study, we exploited vertically-aligned silicon micropillar arrays as culture systems for human iPSC-derived cortical progenitors.

View Article and Find Full Text PDF