Publications by authors named "Luciane C Alberici"

Background: Evidence supports the neuroprotective effects of physical activity, either in experimental animal models or humans. However, the biological mechanisms by which physical exercise modulates dementia and Alzheimer's disease (AD) progression are still unclear.

Objective: This study investigated whether long-term (6 months) of voluntary wheel running induces neuroprotective effects in the pathogenesis of AD in middle-aged (8 months) female mice, focusing on energy metabolism.

View Article and Find Full Text PDF

Senescence impairs liver physiology, mitochondrial function and circadian regulation, resulting in systemic metabolic dysregulation. Given the limited research on the effects of combined exercise on an ageing liver, this study aimed to evaluate its impact on liver metabolism, circadian rhythms and mitochondrial function in senescence-accelerated mouse-prone 8 (SAMP8) and senescence-accelerated mouse-resistant 1 (SAMR1) mice. Histological, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunoblotting analyses were conducted, supplemented by transcriptomic data sets and AML12 hepatocyte studies.

View Article and Find Full Text PDF

Existing literature suggests that infection-specific mechanisms may play a significant role in the onset and progression of dementia, as opposed to the broader phenomenon of systemic inflammation. In addition, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors have been proposed as a potential therapeutic approach for sepsis, given their anti-inflammatory and antioxidant properties. We investigated the neuroprotective effect of an HMG-CoA reductase inhibitor (simvastatin) by analyzing neurodegenerative markers, mitochondrial respiration, and neuronal tracing in the prefrontal cortex (PFC) and thalamic nucleus reuniens (RE) of sepsis survivor animals.

View Article and Find Full Text PDF

EMC1 is part of the endoplasmic reticulum (ER) membrane protein complex, whose functions include the insertion of transmembrane proteins into the ER membrane, ER-mitochondria contact, and lipid exchange. Here, we show that the gene is expressed in the somatic musculature and the protein localizes to the sarcoplasmic reticulum (SR) network. Muscle-specific RNAi led to severe motility defects and partial late pupae/early adulthood lethality, phenotypes that are rescued by co-expression with an transgene.

View Article and Find Full Text PDF

The bone-muscle unit refers to the reciprocal regulation between bone and muscle by mechanical interaction and tissue communication via soluble factors. The RANKL stimulation induces mitochondrial biogenesis and increases the oxidative capacity in osteoclasts and adipocytes. RANKL may bind to the membrane bound RANK or to osteoprotegerin (OPG), a decoy receptor that inhibits RANK-RANKL activation.

View Article and Find Full Text PDF

Background And Hypothesis: Redox dysregulation has been proposed as a convergent point of childhood trauma and the emergence of psychiatric disorders, such as schizophrenia (SCZ). A critical region particularly vulnerable to environmental insults during adolescence is the ventral hippocampus (vHip). However, the impact of severe stress on vHip redox states and their functional consequences, including behavioral and electrophysiological changes related to SCZ, are not entirely understood.

View Article and Find Full Text PDF

Adolescent individuals exhibit great variability in cortical dynamics and behavioral outcomes. The developing adolescent brain is highly sensitive to social experiences and environmental insults, influencing how personality traits emerge. A distinct pattern of mitochondrial gene expression in the prefrontal cortex (PFC) during adolescence underscores the essential role of mitochondria in brain maturation and the development of mental illnesses.

View Article and Find Full Text PDF

The effects of voluntary running on the skeletal muscle of rats with pulmonary arterial hypertension (PAH) were tested in the present study. PAH was induced in rats by a single injection of monocrotaline (MCT, 60 mg/kg). Rats in the sedentary hypertension (HS) group had their tolerance to physical exertion reduced throughout the experiment, while those in the sedentary control (SC), exercise control (EC), exercise hypertension (EH) and median exercise (EM) groups maintained or increased.

View Article and Find Full Text PDF

Background And Purpose: Cannabis legalization has risen in many countries, and its use during pregnancy has increased. The endocannabinoid system is present in the CNS at early stages of embryonic development, and regulates functional brain maturation including areas responsible for respiratory control, data on the influence of external cannabinoids on the development of the respiratory system and possible consequences during postnatal life are limited.

Experimental Approach: We evaluated the effects of prenatal exposure to synthetic cannabinoid (WIN 55,212-2 [WIN], 0.

View Article and Find Full Text PDF

Aging can modify the morphology and function of the liver, such as generating a decrease in the mitochondria content, autophagy, and cell senescence. Although exercise training has several beneficial effects on hepatic metabolism, its actions on autophagy processes, mitochondrial function, and cellular senescence need to be more widely explored. The present study verified the effects of aging and exercise on hepatic circadian markers, autophagy, and mitochondria activity in 24-month-old mice with a combined exercise training protocol.

View Article and Find Full Text PDF

Interleukin 6 (IL-6) acts as a pro and anti-inflammatory cytokine, has an intense correlation with exercise intensity, and activates various pathways such as autophagy and mitochondrial unfolded protein response. Also, IL-6 is interconnected to circadian clock-related inflammation and can be suppressed by the nuclear receptor subfamily 1, group D, member 1 (, protein product REV-ERBα). Since IL-6 is linked to physical exercise-modulated metabolic pathways such as autophagy and mitochondrial metabolism, we investigated the relationship of IL-6 with REV-ERBα in the adaptations of these molecular pathways in response to acute intense physical exercise in skeletal muscle.

View Article and Find Full Text PDF

Evidence supports the antitumoral effects of physical activity, either in experimental animal models or humans. However, the biological mechanisms by which physical exercise modulates tumoral development are still unclear. An important feature of the tumor cells is the altered energy metabolism, often associated with definitions of tumor aggressiveness.

View Article and Find Full Text PDF

Sepsis causes overproduction of inflammatory cytokines, organ dysfunction, and cognitive impairment in survivors. In addition to inflammation, metabolic changes occur according to the stage and severity of the disease. Understanding the role and place of metabolic disturbances in the pathophysiology of sepsis is essential to evaluate the framework of septic patients, predict the syndrome progress, and define the treatment strategies.

View Article and Find Full Text PDF

Oropouche virus (OROV) is an emerging arbovirus in South and Central Americas with high spreading potential. OROV infection has been associated with neurological complications and OROV genomic RNA has been detected in cerebrospinal fluid from patients, suggesting its neuroinvasive potential. Motivated by these findings, neurotropism and neuropathogenesis of OROV have been investigated in murine models, which do not fully recapitulate the complexity of the human brain.

View Article and Find Full Text PDF

Strategies capable of attenuating TLR4 can attenuate metabolic processes such as inflammation, endoplasmic reticulum (ER) stress, and apoptosis in the body. Physical exercise has been a cornerstone in suppressing inflammation and dysmetabolic outcomes caused by TRL4 activation. Thus, the present study aimed to evaluate the effects of a chronic physical exercise protocol on the TLR4 expression and its repercussion in the inflammation, ER stress, and apoptosis pathways in mice hearts.

View Article and Find Full Text PDF

Altered plasma triglyceride metabolism and changes in dietary fatty acid types and levels are major contributors to the development of metabolic and cardiovascular diseases such as fatty liver disease, obesity, diabetes, and atherosclerosis. Lipid accumulation in visceral adipose tissue and ectopically in other organs, as well as lipid-induced redox imbalance, is connected to mitochondrial dysfunction in a range of oxidative stress-associated metabolic and degenerative disorders. Successful mitochondrial adaptive responses in the context of hypertriglyceridemia and dietary bioactive polyunsaturated fatty acids contribute to increase body energy expenditure and reduce oxidative stress, thus allowing several cell types to cope with metabolic challenges and stresses.

View Article and Find Full Text PDF

Skeletal muscle has the intrinsic ability to self-repair through a multifactorial process, but many aspects of its cellular and molecular mechanisms are not fully understood. There is increasing evidence that some members of the mammalian β-galactoside-binding protein family (galectins) are involved in the muscular repair process (MRP), including galectin-3 (Gal-3). However, there are many questions about the role of this protein on muscle self-repair.

View Article and Find Full Text PDF

Background: Freezing human biopsies is common in clinical practice for storage. However, this technique disrupts mitochondrial membranes, hampering further analyses of respiratory function. To contribute to laboratorial diagnosis of mitochondrial diseases, this study sought to develop a respirometry approach using O2k (Oroboros Ins.

View Article and Find Full Text PDF

Objective: MicroRNAs (miRNA) are known to regulate the expression of genes involved in several physiological processes including metabolism, mitochondrial biogenesis, proliferation, differentiation, and cell death.

Methods: Using "in silico" analyses, we identified 219 unique miRNAs that potentially bind to the 3'UTR region of a critical mitochondrial regulator, the peroxisome proliferator-activated receptor gamma coactivator (PGC) 1 alpha (Pgc1α). Of the 219 candidate miRNAs, miR-696 had one of the highest interactions at the 3'UTR of Pgc1α, suggesting that miR-696 may be involved in the regulation of Pgc1α.

View Article and Find Full Text PDF

Tau is a microtubule-associated protein (MAP) responsible for controlling the stabilization of microtubules in neurons. Tau function is regulated by phosphorylation. However, in some neurological diseases Tau becomes aberrantly hyperphosphorylated, which contributes to the pathogenesis of neurological diseases, known as tauopathies.

View Article and Find Full Text PDF

The expression of morphological differences between the castes of social bees is triggered by dietary regimes that differentially activate nutrient-sensing pathways and the endocrine system, resulting in differential gene expression during larval development. In the honey bee, Apis mellifera, mitochondrial activity in the larval fat body has been postulated as a link that integrates nutrient-sensing via hypoxia signaling. To understand regulatory mechanisms in this link, we measured reactive oxygen species (ROS) levels, oxidative damage to proteins, the cellular redox environment, and the expression of genes encoding antioxidant factors in the fat body of queen and worker larvae.

View Article and Find Full Text PDF

Purpose: To evaluate the effects of taurine supplementation associated or not with chronic exercise on body composition, mitochondrial function, and expression of genes related to mitochondrial activity and lipid oxidation in the subcutaneous white adipose tissue (scWAT) of obese women.

Methods: A randomized and double-blind trial was developed with 24 obese women (BMI 33.1 ± 2.

View Article and Find Full Text PDF

Key Points: The mechanisms involved in hypothermia and fever during systemic inflammation (SI) remain largely unknown. Our data support the contention that brain-mediated mechanisms are different in hypertension during SI. Considering that, clinically, it is not easy to assess all mechanisms involved in cardiovascular and thermoregulatory control during SI, the present study sheds light on these integrated mechanisms that may be triggered simultaneously in septic hypertensive patients.

View Article and Find Full Text PDF

Sepsis-associated encephalopathy causes brain dysfunction that can result in cognitive impairments in sepsis survivor patients. In previous work, we showed that simvastatin attenuated oxidative stress in brain structures related to memory in septic rats. However, there is still a need to evaluate the long-term impact of simvastatin administration on brain neurodegenerative processes and cognitive damage in sepsis survivors.

View Article and Find Full Text PDF

Evidence suggests that physical exercise has effects on neuronal plasticity as well as overall brain health. This effect has been linked to exercise capacity in modulating the antioxidant status, when the oxidative stress is usually linked to the neuronal damage. Although high-intensity interval training (HIIT) is the training-trend worldwide, its effect on brain function is still unclear.

View Article and Find Full Text PDF