Background: Cannabinoids, the active components of marijuana, stimulate appetite, and cannabinoid receptor-1 (CB1-R) antagonists suppress appetite and promote weight loss. Little is known about how CB1-R antagonists affect the central neurocircuitry, specifically the melanocortin system that regulates energy balance.
Methodology/principal Findings: Here, we show that peripherally administered CB1-R antagonist (AM251) or agonist equally suppressed or stimulated feeding respectively in A(y) , which lack a functional melanocortin system, and wildtype mice, demonstrating that cannabinoid effects on feeding do not require melanocortin circuitry.
Despite high leptin levels, most obese humans and rodents lack responsiveness to its appetite-suppressing effects. We demonstrate that leptin modulates NPY/AgRP and alpha-MSH secretion from the ARH of lean mice. High-fat diet-induced obese (DIO) mice have normal ObRb levels and increased SOCS-3 levels, but leptin fails to modulate peptide secretion and any element of the leptin signaling cascade.
View Article and Find Full Text PDF