Publications by authors named "Luciana Souza-Moreira"

Introduction: Cryopreservation is a critical process of cell products for achieving a commercial viability through wide scale adoption. By preserving cells in a lower temperature, cryopreservation enables a product to be off-the-shelf and ready for infusion. An optimized cryopreservation strategy can maintain the viability, phenotype, and potency of thawed mesenchymal stromal/stem cells (MSCs) while being regulatory compliant.

View Article and Find Full Text PDF

Background & Aims: Lipid droplet (LD) accumulation in cells and tissues is understood to be an evolutionarily conserved tissue tolerance mechanism to prevent lipotoxicity caused by excess lipids; however, the presence of excess LDs has been associated with numerous diseases. Sepsis triggers the reprogramming of lipid metabolism and LD accumulation in cells and tissues, including the liver. The functions and consequences of sepsis-triggered liver LD accumulation are not well known.

View Article and Find Full Text PDF

Influenza A virus (IAV)-induced acute lung injury (ALI) is characterized by pronounced proinflammatory activation and respiratory lung dysfunction. In this study, we performed deep immune profiling on airway and circulating immune cells to examine the effect of immunomodulation and therapeutic outcomes of mesenchymal stem cells (MSCs) therapy in mice with IAV-induced ALI. Animals were inoculated intranasally with H1N1 IAV, followed by intravenous administration of vehicle, or human clinical-grade, bone marrow-derived MSCs 24-h later, and monitored for six days to evaluate the survival.

View Article and Find Full Text PDF
Article Synopsis
  • Zika virus (ZIKV) is linked to serious neurological disorders and congenital diseases, with its infection mechanisms in neural cells being not fully understood.
  • The study shows that ZIKV alters lipid metabolism by enhancing lipogenesis and reducing lipolysis, resulting in increased lipid droplet (LD) accumulation in neural cells.
  • Inhibiting the enzyme DGAT-1 not only reduces LD accumulation and ZIKV replication but also mitigates weight loss and mortality in infected models, suggesting that targeting lipid metabolism could be a promising strategy for treating ZIKV infections.
View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are being studied for the treatment of COVID-19-associated critical illness, due to their immunomodulatory properties. Here, we hypothesized that viral mimic-priming improves MSCs' abilities to rebalance the dysregulated immune responses in COVID-19. Transcriptome analysis of poly(I:C)-primed MSCs (pIC-MSCs) showed upregulation of pathways in antiviral and immunomodulatory responses.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) and in its severe form, acute respiratory distress syndrome (ARDS), results in increased pulmonary vascular inflammation and permeability and is a major cause of mortality in many critically ill patients. Although cell-based therapies have shown promise in experimental ALI, strategies are needed to enhance the potency of mesenchymal stem cells (MSCs) to develop more effective treatments. Genetic modification of MSCs has been demonstrated to significantly improve the therapeutic benefits of these cells; however, the optimal vector for gene transfer is not clear.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are a potential therapy for many chronic inflammatory diseases due to their regenerative, immunologic and anti-inflammatory properties. The two-way dialogue between MSCs and macrophages is crucial to tissue regeneration and repair. Previous research demonstrated that murine adipose-derived MSC conditioned medium (ASCcm) reprograms macrophages to an M2-like phenotype which protects from experimental colitis and sepsis.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have been shown to exert immunomodulatory effects in both acute and chronic diseases. In acute inflammatory conditions like sepsis, cell therapy must be administered within hours of diagnosis, requiring "off-the-shelf" cryopreserved allogeneic cell products. However, their immunomodulatory potency, particularly in abilities to modulate innate immune cells, has not been well documented.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory cardiovascular disease that is responsible of high mortality worldwide. Evidence indicates that maladaptive autoimmune responses in the arterial wall play critical roles in the process of atherosclerosis. Cortistatin is a neuropeptide expressed in the vascular system and atherosclerotic plaques that regulates vascular calcification and neointimal formation, and inhibits inflammation in different experimental models of autoimmune diseases.

View Article and Find Full Text PDF

Cortistatin is a neuropeptide isolated from cortical brain regions, showing high structural homology and sharing many functions with somatostatin. However, cortistatin exerts unique functions in the central nervous and immune systems, including decreasing locomotor activity, inducing sleep-promoting effects, and deactivating inflammatory and T helper (TH )1/TH 17-driven responses in preclinical models of sepsis, arthritis, multiple sclerosis, and colitis. Besides its release by cortical and hippocampal interneurons, cortistatin is produced by macrophages, lymphocytes, and peripheral nociceptive neurons in response to inflammatory stimuli, supporting a physiological role of cortistatin in the immune and nociceptive systems.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune disease caused by loss of immunologic self tolerance and characterized by chronic joint inflammation. Cells isolated from human amniotic membrane (HAMCs) were recently found to display immunosuppressive properties. The aim of this study was to characterize the effect of HAMCs on antigen-specific T cell responses in RA patients and to evaluate their therapeutic potential in a preclinical experimental model of RA.

View Article and Find Full Text PDF

Adrenomedullin is a neuropeptide known for its cardiovascular activities and anti-inflammatory effects. Here, we investigated the effect of adrenomedullin in a model of experimental autoimmune encephalomyelitis (EAE) that mirrors chronic progressive multiple sclerosis. A short-term systemic treatment with adrenomedullin reduced clinical severity and incidence of EAE, the appearance of inflammatory infiltrates in spinal cord and the subsequent demyelination and axonal damage.

View Article and Find Full Text PDF

Cortistatin is a cyclic-neuropeptide produced by brain cortex and immune cells that shows potent anti-inflammatory activity. In this article, we investigated the effect of cortistatin in two models of experimental autoimmune encephalomyelitis (EAE) that mirror chronic and relapsing-remitting multiple sclerosis. A short-term systemic treatment with cortistatin reduced clinical severity and incidence of EAE, the appearance of inflammatory infiltrates in spinal cord, and the subsequent demyelination and axonal damage.

View Article and Find Full Text PDF

Ghrelin is an important gastrointestinal hormone that regulates feeding and metabolism. Moreover, ghrelin is produced by immune cells and shows potent anti-inflammatory activities. Here, we investigated its effect in two models of experimental autoimmune encephalomyelitis (EAE) that mirror chronic and relapsing-remitting multiple sclerosis.

View Article and Find Full Text PDF

Objective: To investigate the role of the antiinflammatory neuropeptide cortistatin in chronic pain evoked by joint inflammation.

Methods: Thermal and mechanical hyperalgesia was evoked in mouse knee joints by intraplantar injection of tumor necrosis factor α and intraarticular infusion of Freund's complete adjuvant, and the analgesic effects of cortistatin, administered centrally, peripherally, and systemically, were assessed. In addition, the effects of cortistatin on the production of nociceptive peptides and the activation of pain signaling were assayed in dorsal root ganglion cultures and in inflammatory pain models.

View Article and Find Full Text PDF

Vasoactive intestinal peptide (VIP) is a well-known immunoregulatory neuropeptide produced by the immune system in response to inflammation, autoimmunity or alloantigens as a natural endogenous mechanism of induction of tolerance. VIP has been proven therapeutically effective in various experimental models of autoimmune disorders and recently in human sarcoidosis. Numerous studies clearly show that VIP exerts its immunomodulatory effects by downregulating both inflammatory and Th1 responses.

View Article and Find Full Text PDF

A hallmark in most neurological disorders is a massive neuronal cell death, in which uncontrolled immune response is usually involved, leading to neurodegeneration. The vasoactive intestinal peptide (VIP) is a pleiotropic peptide that combines neuroprotective and immunomodulatory actions. Alterations on VIP/VIP receptors in patients with neurodenegerative diseases, together with its involvement in the development of embryonic nervous tissue, and findings found in VIP-deficient mutant mice, have showed the relevance of this endogenous peptide in normal physiology and in pathologic states of the central nervous system (CNS).

View Article and Find Full Text PDF

Objective: To investigate the effect of adipose-derived mesenchymal stromal cells (ASCs) on the activation state of macrophages (MΦ) in vitro, and the potential therapeutic effect of these cells in experimental colitis and sepsis.

Design: Murine bone marrow-derived macrophages were cultured with ASCs or with ASC conditioned media (ASC-MΦ) and characterised for the expression of several regulatory macrophage markers, including enzymes and cytokines, and for their immunomodulatory capacity in vitro. The therapeutic effect was investigated of ASC-MΦ in two models of experimental inflammatory colitis induced by trinitrobenzene sulphonic acid and dextran sodium sulphate, and in polymicrobial sepsis induced by caecal ligation and puncture.

View Article and Find Full Text PDF

Although necessary to eliminate pathogens, inflammation can lead to serious deleterious effects in the host if left unchecked. During the inflammatory response, further damage may arise from potential autoimmune responses occurring when the immune cells and molecules that respond to pathogen-derived antigens also react to self-antigens. In this sense, the identification of endogenous factors that control exacerbated immune responses is a key goal for the development of new therapeutic approaches for inflammatory and autoimmune diseases.

View Article and Find Full Text PDF

Because there are no particular molecular signatures of self, autoimmunity is the inevitable evolutionary price of being able to make effective responses against a wide variety of pathogens by the immune system. Without the various phenomena referred to as immune tolerance, the organism would surely self-destruct. Considerable evidence suggests that various endogenous neuropeptides play a major role in the education of our immune system to be self-tolerant.

View Article and Find Full Text PDF