Publications by authors named "Luciana Rossini Pinto"

Sugarcane yellow leaf disease (YLD) caused by sugarcane yellow leaf virus (ScYLV) is a major threat for the sugarcane industry worldwide, and the aphid is its main vector. Breeding programs in Brazil have provided cultivars with intermediate resistance to ScYLV, whereas the incidence of ScYLV has been underestimated partly due to the complexity of YLD symptom expression and identification. Here, we evaluated YLD symptoms in a field assay using eight sugarcane genotypes comprising six well-established commercial high-sucrose cultivars, one biomass yield cultivar, and a susceptible reference under greenhouse conditions, along with estimation of virus titer through RT-qPCR from leaf samples.

View Article and Find Full Text PDF
Article Synopsis
  • Poaceae is a diverse plant family that includes key crops like forage grasses and sugarcane, which face challenges in genetic research due to their complex genomic structures.
  • The study focuses on developing a machine learning approach to improve the prediction of complex traits in these polyploid species, utilizing genotypic data from sugarcane and forage grasses.
  • The new predictive system outperformed traditional methods, showing over 50% improvements in accuracy, which could streamline breeding programs and enhance genetic advancements.
View Article and Find Full Text PDF

Orphan genes (OGs) are protein-coding genes that are restricted to particular clades or species and lack homology with genes from other organisms, making their biological functions difficult to predict. OGs can rapidly originate and become functional; consequently, they may support rapid adaptation to environmental changes. Extensive spread of mobile elements and whole-genome duplication occurred in the group, which may have contributed to the origin and diversification of OGs in the sugarcane genome.

View Article and Find Full Text PDF

(ScYLV), , , is one of the main viruses that infect sugarcane worldwide. The virus is transmitted by the aphid in a persistent, circulative manner. To better understand the interactions between ScYLV, sugarcane genotypes and , we explored the effect of sugarcane cultivars on the feeding behavior and biological performance of the vector.

View Article and Find Full Text PDF

Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus.

View Article and Find Full Text PDF

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and the core regulator of cellular signaling. Despite this substantial importance, the kinomes of sugarcane and sorghum have not been profiled. Here, we identified and profiled the complete kinomes of the polyploid (Ssp) and (Sbi), a close diploid relative.

View Article and Find Full Text PDF

Flowering is of utmost relevance for the agricultural productivity of the sugarcane bioeconomy, but data and knowledge of the genetic mechanisms underlying its photoperiodic induction are still scarce. An understanding of the molecular mechanisms that regulate the transition from vegetative to reproductive growth in sugarcane could provide better control of flowering for breeding. This study aimed to investigate the transcriptome of +1 mature leaves of a sugarcane cultivar subjected to florally inductive and non-inductive photoperiodic treatments to identify gene expression patterns and molecular regulatory modules.

View Article and Find Full Text PDF

Sugarcane is an economically important crop, but its genomic complexity has hindered advances in molecular approaches for genetic breeding. New cultivars are released based on the identification of interesting traits, and for sugarcane, brown rust resistance is a desirable characteristic due to the large economic impact of the disease. Although marker-assisted selection for rust resistance has been successful, the genes involved are still unknown, and the associated regions vary among cultivars, thus restricting methodological generalization.

View Article and Find Full Text PDF

Sugarcane mosaic virus (SCMV) is the causal agent of sugarcane mosaic disease (SMD) in Brazil; it is mainly controlled by using resistant cultivars. Studies on the changes in sugarcane transcriptome provided the first insights about the molecular basis underlying the genetic resistance to SMD; nonetheless, epigenetic modifications such as cytosine methylation is also informative, considering its roles in gene expression regulation. In our previous study, differentially transcribed fragments (DTFs) were obtained using cDNA-amplified fragment length polymorphism by comparing mock- and SCMV-inoculated plants from two sugarcane cultivars with contrasting responses to SMD.

View Article and Find Full Text PDF

The epigenetic diversity of six genotype groups (commercial cultivars, , , , , and sp.) was assessed through methylation-sensitive amplification polymorphism (MSAP). A total of 1341 MSAP loci were analyzed, of which 1117 (83.

View Article and Find Full Text PDF

Objective: The selection of reference genes in sugarcane under Sugarcane mosaic virus (SCMV) infection has not been reported and is indispensable to get reliable reverse transcription quantitative PCR (RT-qPCR) results for validation of transcriptome analysis. In this regard, seven potential reference genes were tested by RT-qPCR and ranked according to their stability using BestKeeper, NormFinder and GeNorm algorithms, and RefFinder WEB-based software in an experiment performed with samples from two sugarcane cultivars contrasting for SCMV resistance, when mechanically inoculated with a severe SCMV strain and using mock inoculated plant controls.

Results: The genes Uridylate kinase (UK) and Ubiquitin-conjugating enzyme 18 (UBC18) were the most stable according to GeNorm algorithm and the Pearson correlation coefficients with the BestKeeper index.

View Article and Find Full Text PDF

The Brazilian sugarcane industry plays an important role in the worldwide supply of sugar and ethanol. Investigation into the genetic structure of current commercial cultivars and comparisons to the main ancestor species allow sugarcane breeding programs to better manage crosses and germplasm banks as well as to promote its rational use. In the present study, the genetic structure of a group of Brazilian cultivars currently grown by commercial producers was assessed through microsatellite markers and contrasted with a group of basic germplasm mainly composed of Saccharum officinarum and S.

View Article and Find Full Text PDF

Sugarcane is an important crop and a major source of sugar and alcohol. In this study, we performed de novo assembly and transcriptome annotation for six sugarcane genotypes involved in bi-parental crosses. The de novo assembly of the sugarcane transcriptome was performed using short reads generated using the Illumina RNA-Seq platform.

View Article and Find Full Text PDF

Sugarcane microsatellites or simple sequence repeats (SSR) were developed in an economical and practical way by mining EST databases. A survey in the SUCEST (sugarcane EST) database revealed a total of 2005 clusters out of 43,141 containing SSRs. Of these, 8.

View Article and Find Full Text PDF