Publications by authors named "Luciana Renna"

The plant endoplasmic reticulum (ER) contacts heterotypic membranes at membrane contact sites (MCSs) through largely undefined mechanisms. For instance, despite the well-established and essential role of the plant ER-chloroplast interactions for lipid biosynthesis, and the reported existence of physical contacts between these organelles, almost nothing is known about the ER-chloroplast MCS identity. Here we show that the Arabidopsis ER membrane-associated VAP27 proteins and the lipid-binding protein ORP2A define a functional complex at the ER-chloroplast MCSs.

View Article and Find Full Text PDF

In this study, Cucurbita pepo L., one of the most cultivated, consumed and economically important crop worldwide, was used as model plant to test the toxic effects of the four most abundant microplastics identified in contaminated soils, i.e.

View Article and Find Full Text PDF

Plants rely on both actin and microtubule cytoskeletons to fine-tune sorting and spatial targeting of membranes during cell growth and stress adaptation. Considerable advances have been made in recent years in the comprehension of the relationship between the trans-Golgi network/early endosome (TGN/EE) and cytoskeletons, but studies have mainly focused on the transport to and from the plasma membrane. We address here the relationship of the cytoskeleton with different endoplasmic reticulum (ER) export mechanisms toward vacuoles.

View Article and Find Full Text PDF

Phosphoglucoisomerase (PGI) isomerizes fructose 6-phosphate (F6P) and glucose 6-phosphate (G6P) in starch and sucrose biosynthesis. Both plastidic and cytosolic isoforms are found in plant leaves. Using recombinant enzymes and isolated chloroplasts, we have characterized the plastidic and cytosolic isoforms of PGI.

View Article and Find Full Text PDF

SYP51 and 52 are the two members of the SYP5 Qc-SNARE gene family in . These two proteins, besides their high level of sequence identity (85%), have shown to have differential functional specificity and possess a different interactome. Here we describe a unique and specific interaction of SYP51 with an ER aquaporin, AtNIP1;1 (also known as NLM1) indicated to be able to transport arsenite [As(III)] and previously localized on PM.

View Article and Find Full Text PDF

Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans.

View Article and Find Full Text PDF

The availability of more specific dyes for a subset of endomembrane compartments, combined with the development of genetically encoded probes and advanced microscopy technologies, makes live cell imaging an approach that goes beyond the microscopically observation of cell structure. Here we describe the latest improved techniques to investigate protein-protein interaction, protein topology, and protein dynamics.Furthermore, we depict new technical approaches to identify mutants for chloroplast morphology and distribution through the tracking of chlorophyll fluorescence, as well as mutants for chloroplast movement.

View Article and Find Full Text PDF

In plant cells, vacuoles are extremely important for growth and development, and influence important cellular functions as photosynthesis, respiration, and transpiration. Plant cells contain lytic and storage vacuoles, whose size can be different depending on cell type and tissue developmental stage. One of the main roles of vacuoles is to regulate the cell turgor in response to different stimuli.

View Article and Find Full Text PDF

Through yet-undefined mechanisms, the plant endoplasmic reticulum (ER) has a critical role in endocytosis. The plant ER establishes a close association with endosomes and contacts the plasma membrane (PM) at ER-PM contact sites (EPCSs) demarcated by the ER membrane-associated VAMP-associated-proteins (VAP). Here, we investigated two plant VAPs, VAP27-1 and VAP27-3, and found an interaction with clathrin and a requirement for the homeostasis of clathrin dynamics at endocytic membranes and endocytosis.

View Article and Find Full Text PDF

The unfolded protein response (UPR) is an ancient signaling pathway designed to protect cells from the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER). Because misregulation of the UPR is potentially lethal, a stringent surveillance signaling system must be in place to modulate the UPR. The major signaling arms of the plant UPR have been discovered and rely on the transcriptional activity of the transcription factors bZIP60 and bZIP28 and on the kinase and ribonuclease activity of IRE1, which splices mRNA to activate bZIP60.

View Article and Find Full Text PDF

calmodulin binding transcription activator (CAMTA) factors repress the expression of genes involved in salicylic acid (SA) biosynthesis and SA-mediated immunity in healthy plants grown at warm temperature (22°C). This repression is overcome in plants exposed to low temperature (4°C) for more than a week and in plants infected by biotrophic and hemibiotrophic pathogens. Here, we present evidence that CAMTA3-mediated repression of SA pathway genes in nonstressed plants involves the action of an N-terminal repression module (NRM) that acts independently of calmodulin (CaM) binding to the IQ and CaM binding (CaMB) domains, a finding that is contrary to current thinking that CAMTA3 repression activity requires binding of CaM to the CaMB domain.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is an essential organelle that spreads throughout the cytoplasm as one interconnected network of narrow tubules and dilated cisternae that enclose a single lumen. The ER network undergoes extensive remodeling, which critically depends on membrane-cytoskeleton interactions [1]. In plants, the ER is also highly mobile, and its streaming contributes significantly to the movement of other organelles [2, 3].

View Article and Find Full Text PDF

Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area.

View Article and Find Full Text PDF

The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. Here, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene.

View Article and Find Full Text PDF

Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function.

View Article and Find Full Text PDF

Eukaryotic cells internalize cargo at the plasma membrane via endocytosis, a vital process that is accomplished through a complex network of endosomal organelles. In mammalian cells, the ER is in close association with endosomes and regulates their fission. Nonetheless, the physiological role of such interaction on endocytosis is yet unexplored.

View Article and Find Full Text PDF

BiFC (Bimolecular Fluorescence Complementation) is one of the most widely used techniques to study protein-protein interactions as well as protein topology in living cells. This method allows the visualization of protein interactions or the analysis of their topology in the cell compartments where the proteins belong, without changing their chemical properties, as often occurs after mixing the content of different cellular compartments in cell extracts. Several laboratories use this method because it is relatively easy to perform; however, sometimes a positive protein-protein interaction BiFC signal (i.

View Article and Find Full Text PDF

Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion.

View Article and Find Full Text PDF
Article Synopsis
  • Plant cells struggle with efficiently moving proteins from the endoplasmic reticulum (ER) to the Golgi apparatus, and the study focuses on a protein transport mutant in Arabidopsis thaliana called mag5.
  • The mag5 mutant accumulates storage protein precursors in seeds and has a deletion in the gene related to a crucial component (Sec16) for proper ER export.
  • The findings show that the MAG5 protein is important for regulating the COPII coat's association with ER exit sites, impacting how proteins are exported to the Golgi, indicating its vital role in plant cell cargo transport.
View Article and Find Full Text PDF

N-myristoylation is a crucial irreversible eukaryotic lipid modification allowing a key subset of proteins to be targeted at the periphery of specific membrane compartments. Eukaryotes have conserved N-myristoylation enzymes, involving one or two N-myristoyltransferases (NMT1 and NMT2), among which NMT1 is the major enzyme. In the postembryonic developmental stages, defects in NMT1 lead to aberrant cell polarity, flower differentiation, fruit maturation, and innate immunity; however, no specific NMT1 target responsible for such deficiencies has hitherto been identified.

View Article and Find Full Text PDF

Two envelope membranes delimit plastids, the defining organelles of plant cells. The inner and outer envelope membranes are unique in their protein and lipid composition. Several studies have attempted to establish the proteome of these two membranes; however, differentiating between them is difficult due to their close proximity.

View Article and Find Full Text PDF

This protocol describes a fluorescence microscope-based screening of Arabidopsis seedlings and describes how to map recessive mutations that alter the subcellular distribution of a specific tagged fluorescent marker in the secretory pathway. Arabidopsis is a powerful biological model for genetic studies because of its genome size, generation time, and conservation of molecular mechanisms among kingdoms. The array genotyping as an approach to map the mutation in alternative to the traditional method based on molecular markers is advantageous because it is relatively faster and may allow the mapping of several mutants in a really short time frame.

View Article and Find Full Text PDF

The mechanisms underlying the organization and dynamics of plant endomembranes are largely unknown. Arabidopsis RHD3, a distant member of the dynamin superfamily, has recently been implicated in plant ER morphology and Golgi movement through analyses of dominant-negative mutants of the putative GTPase domain in a heterologous system. Whether RHD3 is indispensable for ER architecture and what role regions other than the putative GTPase domain play in RHD3 function are unanswered questions.

View Article and Find Full Text PDF

Eukaryotic cells use COPII-coated carriers for endoplasmic reticulum (ER)-to-Golgi protein transport. Selective cargo capture into ER-derived carriers is largely driven by the SEC24 component of the COPII coat. The Arabidopsis genome encodes three AtSEC24 genes with overlapping expression profiles but it is yet to be established whether the AtSEC24 proteins have overlapping roles in plant growth and development.

View Article and Find Full Text PDF

ARF-GTPases are important proteins that control membrane trafficking events. Their activity is largely influenced by the interplay between guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which facilitate the activation or inactivation of ARF-GTPases, respectively. There are 15 predicted proteins that contain an ARF-GAP domain within the Arabidopsis thaliana genome, and these are classified as ARF-GAP domain (AGD) proteins.

View Article and Find Full Text PDF