Publications by authors named "Luciana M Laguinge"

As human colorectal cancer (CRC) cells metastasize to distant sites, they are susceptible to detachment-induced cell death or anoikis - a form of apoptosis that occurs when anchorage-dependent CRC cells go into suspension. Our goal was to identify whether tumor necrosis factor receptor apoptosis-inducing ligand (TRAIL) receptors mediate anoikis in human CRC cells. First, we assessed whether caspases of the extrinsic (caspase-8) or intrinsic (caspase-9) death pathways were involved.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) is a tumor marker that is associated with metastasis, poor response to chemotherapy of colorectal cancer (CRC), and anoikis, a form of apoptosis caused by cell detachment from matrix that is dependent on TRAIL-R2 (DR5) and caspase-8 activation in CRC. Although CEA is a homophilic binding protein that may provide survival signals through homotypical cell aggregation, we now report that CEA binds TRAIL-R2 (DR5) directly in two-hybrid assays to decrease anoikis through the extrinsic pathway. Deletion of the PELPK sequence (delPELPK) of CEA (delPELPK CEA) restores sensitivity to anoikis while it maintains its cell aggregation function.

View Article and Find Full Text PDF

Malignant cells undergo anoikis as they encounter fluid shear stress during transit to a metastatic site. We postulated that intracellular nitric oxide (NO) contributes to this cell death by comparing the growth of human colorectal carcinoma cells in low fluid shear stress rotated three-dimensional (Rotated 3-D) cultures with growth in static three-dimensional (Static 3-D) cultures on nonadherent surfaces and with two-dimensional monolayer (Monolayer 2-D) cultures. NO, loss of microtubules, and apoptosis increased significantly in Rotated 3-D cultures within 10 min and persisted at 24 h, whereas inhibition of NO synthase decreased apoptosis and intracellular NO and prevented tubulin degradation.

View Article and Find Full Text PDF