Publications by authors named "Luciana Facco Dalmolin"

This study focused on developing electrically stimulable hyaluronic acid (HA) films incorporating lipid nanoparticles (NPs) designed for the topical administration of lipophilic drugs and macromolecules. Based on beeswax and medium-chain triglycerides, NPs were successfully integrated into silk fibroin/chitosan films containing HA (NP-HA films) at a density of approximately 10 NP/cm, ensuring a uniform distribution. This integration resulted in a 40% increase in film roughness, a twofold decrease in Young's modulus, and enhanced film flexibility and bioadhesion work.

View Article and Find Full Text PDF

Iontophoresis, a non-invasive application of a constant low-intensity electric current, is a promising strategy to accelerate wound healing. Although its mechanisms are not yet fully elucidated, part of its action seems related to inhibiting bacteria growth. This work aimed to investigate the antimicrobial effect of iontophoresis using Staphylococcus epidermidis and Escherichia coli strains, Gram-positive and Gram-negative bacteria, respectively.

View Article and Find Full Text PDF

Here, we presented new insights of the development of poly(lactic-co-glycolic acid) nanoparticles containing turmeric compounds (turmeric-PLGA-NPs) using emulsion-solvent evaporation method. The nanoparticulate system was characterized by size, zeta potential, morphology, release profile, partition parameter, stability and encapsulation efficiency (%EE). Antioxidant activity studies were also evaluated.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin disease that is difficult to treat. Traditional cold cream, a water-in-oil emulsion made from beeswax, is used to alleviate AD symptoms in clinical practice, although its effectiveness has not been scientifically proven. The addition of propolis has the potential to impart anti-inflammatory properties to cold cream.

View Article and Find Full Text PDF

Topical ophthalmic antibiotics show low efficacy due to the well-known physiological defense mechanisms of the eye, which prevents the penetration of exogenous substances. Here, we aimed to incorporate besifloxacin into liposomes containing amines as positively charged additives and to evaluate the influence of this charge on drug delivery in two situations: (i) iontophoretic and (ii) passive treatments. Hypothesis are (i) charge might enhance the electromigration component upon current application improving penetration efficiency for a burst drug delivery, and (ii) positive charge might prolong formulation residence time, hence drug penetration.

View Article and Find Full Text PDF

Lipophilic drugs do not usually benefit from iontophoresis mainly because they do not solubilize in aqueous formulations suitable for the application of electric current. To explore the influence of iontophoresis on penetration of these drugs, a cationic nanoemulsion was developed to solubilize zinc phthalocyanine (ZnPc), a promising drug for the treatment of skin cancer. To verify the influence of particle size on iontophoresis, an emulsion of nanoemulsion-like composition was also developed.

View Article and Find Full Text PDF

In this study, resveratrol-loaded nanocapsules were developed and its antitumor activity tested on a melanoma mice model. These nanocapsules were spherically-shaped and presented suitable size, negative charge and high encapsulation efficiency for their use as a modified-release system of resveratrol. Nanoencapsulation leads to the drug amorphization.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) nanoparticles containing vanillin were prepared using an emulsion-solvent evaporation technique and were characterized and assessed for their in vitro antioxidant potential. Physicochemical properties of the nanoparticles were characterized by size, polydispersity index, zeta potential, encapsulation efficiency and stability. Solid state and thermal properties were assessed using X-ray diffraction and differential scanning calorimetry, while in vitro drug release profile was also evaluated.

View Article and Find Full Text PDF

Polymeric nanoparticles are colloidal systems that promote protection and modification of physicochemical characteristics of a drug and that also ensure controlled and extended drug release. This paper reports a 2(3) factorial design study to optimize poly(lactide) (PLA) and poly(lactide)-polyethylene glycol (PLA-PEG) blend nanoparticles containing resveratrol (RVT) for prolonged release. The independent variables analyzed were solvent composition, surfactant concentration and ratio of aqueous to organic phase (two levels each factor).

View Article and Find Full Text PDF

In this study, poly(L-lactide) (PLA) nanoparticles containing amphotericin B (AmB) were developed, and the in vitro cytotoxicity to human erythrocytes and efficacy on strains of Candida spp. were evaluated. The nanoparticles were prepared using an emulsion/solvent evaporation method and were characterized with respect to size, size distribution, AmB encapsulation efficiency, AmB state of aggregation, and AmB in vitro release profile.

View Article and Find Full Text PDF

The aim of this study was to assess the potential of nanoparticles to improve the pharmacokinetics of curcumin, with a primary goal of enhancing its bioavailability. Polylactic-co-glycolic acid (PLGA) and PLGA-polyethylene glycol (PEG) (PLGA-PEG) blend nanoparticles containing curcumin were obtained by a single-emulsion solvent-evaporation technique, resulting in particles size smaller than 200 nm. The encapsulation efficiency was over 70% for both formulations.

View Article and Find Full Text PDF