Rep Pract Oncol Radiother
April 2021
Background: The anthropomorphic and anthropometric phantom developed by the research group NRI (Núcleo de Radiações Ionizantes) can reproduce the effects of the interactions of radiation occurring in the human body. The whole internal radiation transport phenomena can be depicted by film dosimeters in breast RT. Our goal was to provide a dosimetric comparison of a radiation therapy (RT) plan in a 4MV 3D-conformal RT (4MV-3DCR T) and experimental data measured in a breast phantom.
View Article and Find Full Text PDFIrradiation of tumor cell lines is a useful way to investigate the effects of ionizing radiation on biological molecules. We designed an easy and reproducible approach for in vitro experimental high dose rate brachytherapy, which was simulated by a Monte Carlo code and dosimetrically characterized by experimental methods to evaluate the correspondence between planned doses and doses absorbed by the cells. This approach is an acrylic platform containing T25 tissue culture flasks and multiwell tissue culture plates.
View Article and Find Full Text PDFAim: To provide a comparative dosimetric analysis of permanent implants of Ho(166)-seeds and temporary HDR Ir(192)-brachytherapy through computational simulation.
Background: Brachytherapy with Ir(192)-HDR or LDR based on temporary wires or permanent radioactive seed implants can be used as dose reinforcement for breast radiation therapy. Permanent breast implants have not been a practical clinical routine; although, I(125) and Pd(103)-seeds have already been reported.
The objective of this study was to compare and analyse the absorbed dose profiles from the conformal radiotherapy planning and experimental dosimetry taken in a breast anthropomorphic and anthropometric phantom. Conformal radiotherapy planning was elaborated in the Treatment Planning System (TPS). EBT2 Gafchromic radiochromic films were applied as dosimeters, positioned internally and superficially in the breast phantom.
View Article and Find Full Text PDFIn the present study, the radiological visibility of ceramic and polymeric devices implanted in breast phantom was investigated for future applications in brachytherapy. The main goal was to determine the radiological viability of ceramic and polymeric devices in vitro by performing simple radiological diagnostic methods such as conventional X-ray analysis and mammography due to its easy access to the population. The radiological response of ceramic and polymeric devices implanted in breast phantom was determined using conventional X-ray, mammography and CT analysis.
View Article and Find Full Text PDF