Publications by authors named "Luciana A Pescatore"

Diabetes mellitus accelerates vascular calcification (VC) and increases the risk of end-stage renal disease (ESRD). Nevertheless, the impact of VC in renal disease progression in type 2 diabetes mellitus (T2DM) is poorly understood. We addressed the effect of VC and mechanisms involved in renal dysfunction in a murine model of insulin resistance and obesity (ob/ob), comparing with their healthy littermates (C57BL/6).

View Article and Find Full Text PDF

Approximately 20% of the world's population will be around or above 65 years of age by the next decade. Out of these, 40% are suspected to have cardiovascular diseases as a cause of mortality. Arteriosclerosis, characterized by increased vascular calcification, impairing Windkessel effect and tissue perfusion, and determining end-organ damage, is a hallmark of vascular pathology in the elderly population.

View Article and Find Full Text PDF

Objective- We hypothesized that ob/ob mice develop expansive vascular remodeling associated with calcification. Approach and Results- We quantified and investigated mechanisms of vascular remodeling and vascular calcification in ob/ob mice after vitamin D(VD) stimulation or PBS (control), compared with C57BL/6 mice. Both ob/ob (OBVD [VD-treated ob/ob mice]) and C57BL/6 (C57VD [VD-treated C57BL/6 mice]) received 8×10 IU/day of intraperitoneal VD for 14 days.

View Article and Find Full Text PDF

Cardiac hypertrophy (CH) is a major independent risk factor for heart failure and mortality. However, therapeutic interventions that target hypertrophy signaling in a load-independent way are unavailable. In a recent issue of (vol.

View Article and Find Full Text PDF

Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types.

View Article and Find Full Text PDF

Thiol proteins may potentially act as redox signaling adaptor proteins, adjusting reactive oxygen species intermediates to specific signals and redox signals to cell homeostasis. In this review, we discuss redox effects of protein disulfide isomerase (PDI), a thioredoxin superfamily oxidoreductase from the endoplasmic reticulum (ER). Abundantly expressed PDI displays ubiquity, interactions with redox and nonredox proteins, versatile effects, and several posttranslational modifications.

View Article and Find Full Text PDF

Dihydroethidium (DHE) is a widely used sensitive superoxide (O2(*-)) probe. However, DHE oxidation yields at least two fluorescent products, 2-hydroxyethidium (EOH), known to be more specific for O2(*-), and the less-specific product ethidium. We validated HPLC methods to allow quantification of DHE products in usual vascular experimental situations.

View Article and Find Full Text PDF