Publications by authors named "Lucian Livadaru"

Atomically precise manufacturing (APM) is a key technique that involves the direct control of atoms in order to manufacture products or components of products. It has been developed most successfully using scanning probe methods and has received particular attention for developing atom scale electronics with a focus on silicon-based systems. This review captures the development of silicon atom-based electronics and is divided into several sections that will cover characterization and atom manipulation of silicon surfaces with scanning tunneling microscopy and atomic force microscopy, development of silicon dangling bonds as atomic quantum dots, creation of atom scale devices, and the wiring and packaging of those circuits.

View Article and Find Full Text PDF

With nanoelectronics reaching the limit of atom-sized devices, it has become critical to examine how irregularities in the local environment can affect device functionality. Here, we characterize the influence of charged atomic species on the electrostatic potential of a semiconductor surface at the subnanometer scale. Using noncontact atomic force microscopy, two-dimensional maps of the contact potential difference are used to show the spatially varying electrostatic potential on the (100) surface of hydrogen-terminated highly doped silicon.

View Article and Find Full Text PDF

Using a noncontact atomic force microscope, we track and manipulate the position of single electrons confined to atomic structures engineered from silicon dangling bonds on the hydrogen terminated silicon surface. An attractive tip surface interaction mechanically manipulates the equilibrium position of a surface silicon atom, causing rehybridization that stabilizes a negative charge at the dangling bond. This is applied to controllably switch the charge state of individual dangling bonds.

View Article and Find Full Text PDF

Here we report the direct observation of single electron charging of a single atomic dangling bond (DB) on the H-Si(100)-2×1 surface. The tip of a scanning tunneling microscope is placed adjacent to the DB to serve as a single-electron sensitive charge detector. Three distinct charge states of the dangling bond--positive, neutral, and negative--are discerned.

View Article and Find Full Text PDF

While it is known that the Si-(7×7) is a conducting surface, measured conductivity values differ by 7 orders of magnitude. Here we report a combined STM and transport method capable of surface conductivity measurement of step-free or single-step containing surface regions and having minimal interaction with the sample, and by which we quantitatively determine the intrinsic conductivity of the Si-(7×7) surface. We found that a single step has a conductivity per unit length about 50 times smaller than the flat surface.

View Article and Find Full Text PDF

We pursue dynamic charge and occupancy modulation of silicon dangling bond sites on H-Si(100)-2 × 1 with a biased scanning tunneling microscope tip and demonstrate that the reactivity and mechanism of product formation of cyclobutylmethylketone (CBMK) on the surface at the active sites may be thus spatially regulated. Reactivity is observed to be dependent on the polarity between tip and surface while the area over which reactivity modulation is established scales according to the dopant concentration in the sample. We account for these observations with examination of the competition kinetics applicable to the CBMK/H-Si reaction and determine how said kinetics are affected by the charge state of DB sites associated with reaction initiation and propagation.

View Article and Find Full Text PDF

We study both experimentally and theoretically the electronic behavior of dangling bonds (DBs) at a hydrogen terminated Si(100)-2×1 surface. Dangling bonds behave as quantum dots and, depending on their separation, can be tunnel coupled with each other or completely isolated. On n-type highly doped silicon, the latter have a net charge of -1e, while coupled DBs exhibit altered but predictable filling behavior derived from an interplay between interdot tunneling and Coulomb repulsion.

View Article and Find Full Text PDF

It is demonstrated that the silicon atom dangling bond (DB) state serves as a quantum dot. Coulomb repulsion causes DBs separated by less, similar2 nm to exhibit reduced localized charge, which enables electron tunnel coupling of DBs. Scanning tunneling microscopy measurements and theoretical modeling reveal that fabrication geometry of multi-DB assemblies determines net occupation and tunnel coupling strength among dots.

View Article and Find Full Text PDF

It is now a well-known fact that the phase of electron waves is altered by external magnetic fields via the Aharonov-Bohm effect. This implies that any electron interference effects will be to some degree affected by the presence of such fields. In this study we examine the distortion effects of external (constant and variable) magnetic fields on electron interference and holography.

View Article and Find Full Text PDF

We investigate the interaction between a nanoparticle and an oil-water interface with particular emphasis on the particle crossing through the interface. The formation of a three-phase contact line is investigated in two cases, namely in the presence and in the absence of surface forces. We carefully examine the interplay between capillary and surface forces in such systems.

View Article and Find Full Text PDF

We propose a self-consistent molecular theory of conformational properties of flexible polymers in melts and solutions. The method employs the polymer reference interaction site model for the intermolecular correlations and the Green function technique for the intramolecular correlations. We demonstrate this method on n-alkane molecules in different environments: water, hexane, and in melt, corresponding to poor, good, and theta condition, respectively.

View Article and Find Full Text PDF

We envision and theoretically investigate a novel behavior of a functionalized nanoparticle designed to translocate through a liquidlike membrane. We develop a statistical-mechanical approach to such a system. We predict a new mechanism for the opening of a circular energy-dominated pore on the membrane by a nanoparticle functionalized with a peptide aggregate.

View Article and Find Full Text PDF

We propose a self-consistent molecular theory of conformational properties of flexible polymers in solution. It is applied to the collapse of a hydrophobic polymer chain in water, and can be readily generalized to any polymer-solvent system (e.g.

View Article and Find Full Text PDF