Publications by authors named "Lucian Iordachescu"

Microplastics (MPs) have emerged as an important research topic due to their ubiquity in the environment and their potentially harmful effects on aquatic biota. However, our knowledge of the abundance and characteristics of the smaller fraction of MPs (<300 μm) in marine waters remains limited. This study aims to compare two different filter pump devices: AAU-UFO (Universal Filtering Object) pump and KCD (KC Denmark's Micro Plastic Particle) pump for sampling small MPs (>10 μm).

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines microplastics (MPs) in corals from three remote islands in the Indian Ocean, specifically focusing on six coral genera across a 1200 km area.
  • - Average microplastic concentration was found to be 0.78 n/g, predominantly consisting of polypropylene (78%) and polyethylene (18%), with no significant differences between the islands.
  • - This research is the first to report on microplastics in corals from the Western Indian Ocean, establishing a baseline for future studies and contributing to environmental monitoring and policy development.
View Article and Find Full Text PDF

Prior microplastic (MP) research has focused more on the efficiency of removal techniques within wastewater treatment plants (WWTP), with comparatively less emphasis placed on identifying and understanding the sources of MPs. In this study, the presence of MP in wastewater from various sources and their associated WWTPs was investigated. Utilising focal plane array micro Fourier Transform Infrared spectroscopy (FPA-μFTIR), the chemical composition, size distribution, and mass of MPs were quantified.

View Article and Find Full Text PDF

Comparative microplastic (MP) data for cephalopods between oceans is scarce. Our aim was to quantify, characterise, and compare MPs in gills, digestive gland, and mantle of chokka squid from the South Atlantic Ocean (SAO) and Indian Ocean (IO) off the coast of South Africa. South African squid had more MPs compared with other studies (means = 2.

View Article and Find Full Text PDF

Retention of microplastics (MPs) at the third largest wastewater treatment plant (WWTP) in Sweden was investigated. The plant is one of the most modern and advanced of its kind, with rapid sand filter for tertiary treatment in combination with mechanical, biological, and chemical treatment. It achieved a significantly high treatment efficiency, which brought the MP concentration in its discharge on par with concentrations measured in marine waters of the same region.

View Article and Find Full Text PDF

Microplastic pollution has been confirmed in all marine compartments. However, information on the sub-surface microplastics (MPs) abundance is still limited. The vertical distribution of MPs can be influenced by water column stratification due to water masses of contrasting density.

View Article and Find Full Text PDF

Studies on the environmental impact of nanoplastics face challenges in plastic analysis and a scarcity of nanoplastic materials necessary for the development of analytical techniques and experiments on biota impact. Here we provide detailed procedures for obtaining nanoparticles suspended in water for the most commonly used polymers: Polypropylene (PP), Polyvinylchloride (PVC), Low- and High-Density Polyethylene (PE-LD, PE-HD), and Polystyrene (PS). We dissolved larger size material to reprecipitate nanoparticles.

View Article and Find Full Text PDF

The retainment of microplastics (MPs) down to 1 μm by a Danish drinking water plant fed with groundwater was quantified using Raman micro-spectroscopy (μRaman). The inlet and outlet were sampled in parallel triplicates over five consecutive days of normal activity. For each triplicate, approximately 1 m of drinking water was filtered with a custom-made device employing 1 μm steel filters.

View Article and Find Full Text PDF

Microplastics (MPs) are ubiquitous pollutants in the ocean, and there is a general concern about their persistence and potential effects on marine ecosystems. We still know little about the smaller size-fraction of marine MPs (MPs <300 μm), which are not collected with standard nets for MPs monitoring (e.g.

View Article and Find Full Text PDF

A complete plastic particle mass balance was established at Sweden's second-largest wastewater treatment plant. It comprised material collected at its two bar screens, a 20 mm and a 2 mm one, in the influent water after the 20 mm screen, the effluent water, and the digested sludge. Macro- and microplastics above 500 µm were analysed individually applying ATR-FTIR, while microplastics of 10-500 µm were analysed by µFTIR imaging with automated particle recognition.

View Article and Find Full Text PDF

While it seems indisputable that potable water contains microplastics (MP), the actual concentrations are much debated and reported numbers vary many orders of magnitude. It is difficult to pinpoint the cause of these differences, but it might be variation between waters, variation between quantification methods, and that some studies did not live up to rigorous analytical standards. Despite the urgent need to understand human exposure by drinking water, there is a lack of trustable methods generating reliable data.

View Article and Find Full Text PDF