Papillary thyroid carcinoma (PTC) is one of the most common, well-differentiated carcinomas of the thyroid gland. PTC nodules are often surrounded by a collagen capsule that prevents the spread of cancer cells. However, as the malignant tumor progresses, the integrity of this protective barrier is compromised, and cancer cells invade the surroundings.
View Article and Find Full Text PDFThe identification of tumor capsular invasion as a sign of malignancy is currently employed in traditional histopathology routines for thyroid nodules. However, its limitations are associated with the assessment criteria for invasion, which often lead to disagreements among observers. The aim of this paper is to introduce a widefield imaging technique combined with quantitative collagen analysis to identify areas of capsular invasion in thyroid neoplasms.
View Article and Find Full Text PDFIntroduction: Although the incidence and mortality rates of colorectal cancer exhibit significant variability, it remains one of the most prevalent cancers worldwide. Endeavors to prevent colorectal cancer development focus on detecting precursor lesions during colonoscopy. The diagnosis of endoscopically resected polyps relies on hematoxylin and eosin staining examination.
View Article and Find Full Text PDFMicroscopic evaluation of tissue sections stained with hematoxylin and eosin is the current gold standard for diagnosing thyroid pathology. Digital pathology is gaining momentum providing the pathologist with additional cues to traditional routes when placing a diagnosis, therefore it is extremely important to develop new image analysis methods that can extract image features with diagnostic potential. In this work, we use histogram and texture analysis to extract features from microscopic images acquired on thin thyroid nodule capsules sections and demonstrate how they enable the differential diagnosis of thyroid nodules.
View Article and Find Full Text PDFSecond harmonic generation (SHG) microscopy is acknowledged as an established imaging technique capable to provide information on the collagen architecture in tissues that is highly valuable for the diagnostics of various pathologies. The polarization-resolved extension of SHG (PSHG) microscopy, together with associated image processing methods, retrieves extensive image sets under different input polarization settings, which are not fully exploited in clinical settings. To facilitate this, we introduce PSHG-TISS, a collection of PSHG images, accompanied by additional computationally generated images which can be used to complement the subjective qualitative analysis of SHG images.
View Article and Find Full Text PDFFront Med (Lausanne)
February 2022
Two-photon microscopy techniques are non-linear optical imaging methods which are gaining momentum in the investigation of fixed tissue sections, fresh tissue or even for experiments. Two-photon excited fluorescence and second harmonic generation are two non-linear optical contrast mechanisms which can be simultaneously used for offering complementary information on the tissue architecture. While the former can originate from endogenous autofluorescence sources (e.
View Article and Find Full Text PDFPolarization-resolved second harmonic generation microscopy is used to provide pixel-level angular distribution of collagen in thyroid nodule capsules. The pixel-level angular distribution is combined with textural analysis to quantify the collagen distribution in follicular adenoma (benign) and papillary thyroid carcinoma (malignant). Three second order nonlinear susceptibility tensor elements ratios, the collagen angular distribution and two parameters accounting for the collagen angular dispersion in different sized areas are extracted and corresponding images are computed in a pixel-by-pixel fashion.
View Article and Find Full Text PDFQuantitative second harmonic generation microscopy was used to investigate collagen organization in the fibrillar capsules of human benign and malignant thyroid nodules. We demonstrate that the combination of texture analysis and second harmonic generation images of collagen can be used to differentiate between capsules surrounding the thyroid follicular adenoma and papillary carcinoma nodules. Our findings indicate that second harmonic generation microscopy can provide quantitative information about the collagenous capsule surrounding both the thyroid and thyroid nodules, which may complement traditional histopathological examination.
View Article and Find Full Text PDF