Fibroblast growth factors (FGFs) are recognized targets for the development of therapies against angiogenesis-driven diseases, including cancer. The formation of a ternary complex with the transmembrane tyrosine kinase receptors (FGFRs), and heparan sulphate proteoglycans (HSPGs) is required for FGF2 pro-angiogenic activity. Here by using a combination of techniques including Nuclear Magnetic Resonance, Molecular Dynamics, Surface Plasmon Resonance and cell-based binding assays we clarify the molecular mechanism of inhibition of an angiostatic small molecule, sm27, mimicking the endogenous inhibitor of angiogenesis, thrombospondin-1.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90) is a prime target for antitumor therapies. The information obtained by molecular dynamics (MD) simulations is combined with NMR data to provide a cross-validated atomic resolution model of the complementary interactions of heat shock protein 90 with a peptidic (shepherdin) and a non-peptidic (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside, AICAR) inhibitor, showing antiproliferative and proapoptotic activity in multiple tumor cell lines. This approach highlights the relevant role of imidazolic moiety in the interaction of both antagonist molecules.
View Article and Find Full Text PDFA nuclear magnetic resonance (NMR) method was implemented to assess in vivo oxygenation levels by a quantitative determination of the 1H NMR myoglobin (Mb) resonances. The proximal His-F8 NdeltaH at 70-90 ppm and Val-E11 gammaCH3 resonance at -2.8 ppm, reflecting deoxygenated (deoxy-Mb) and oxygenated (met-Mb) states, were alternately recorded.
View Article and Find Full Text PDFEndogenous inhibitors of angiogenesis, such as thrombospondin-1 (TSP-1), are promising sources of therapeutic agents to treat angiogenesis-driven diseases, including cancer. TSP-1 regulates angiogenesis through different mechanisms, including binding and sequestration of the angiogenic factor fibroblast growth factor-2 (FGF-2), through a site located in the calcium binding type III repeats. We hypothesized that the FGF-2 binding sequence of TSP-1 might serve as a template for the development of inhibitors of angiogenesis.
View Article and Find Full Text PDFBile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.
View Article and Find Full Text PDFFibroblast growth factor-2 (FGF2) plays a major role in angiogenesis. The pattern recognition receptor long-pentraxin 3 (PTX3) inhibits the angiogenic activity of FGF2. To identify novel FGF2-antagonistic peptide(s), four acetylated (Ac) synthetic peptides overlapping the FGF2-binding region PTX3-(97-110) were assessed for their FGF2-binding capacity.
View Article and Find Full Text PDFFull-length CXCL4 chemokine and a peptide derived from its carboxyl-terminal domain exhibits significant antiangiogenic and anti-tumor activity in vivo and in vitro by interacting with fibroblast growth factor (FGF). In this study we used NMR spectroscopy to characterize at a molecular level the interactions between CXCL4 (47-70) and FGF-2 identifying the peptide residues mainly involved in the contact area with the growth factor. Altogether NMR data point to a major role of the hydrophobic contributions of the C-terminal region of CXCL4 (47-70) peptide in addition to specific contacts established by the N-terminal region through cysteine side chain.
View Article and Find Full Text PDFUnderstanding how proteins are approached by surrounding molecules is fundamental to increase our knowledge of life at atomic resolution. Here, the surface accessibility of a multifunctional small protein, the archaeal protein Sso7d from Sulfolobus solfataricus, has been investigated by using TEMPOL and Gd(III)(DTPA-BMA) as paramagnetic probes. The DNA binding domain of Sso7d appears very accessible both to TEMPOL and Gd(III)(DTPA-BMA).
View Article and Find Full Text PDFBile acids are physiological detergents facilitating absorption, transport, and distribution of lipid-soluble vitamins and dietary fats;they also play a role as signaling molecules that activate nuclear receptors and regulate cholesterol metabolism. Bile acid circulation is mediated by bile acid binding proteins (BABPs), and a detailed structural study of the complex of BABPs with bile salts has become a key issue for the complete understanding of the role of these proteins and their involvement in cholesterol homeostasis. The solution structure here reported describes, at variance with previously determined singly ligated structures, a BABP in a ternary complex with two bile acid molecules, obtained by employing a variety of NMR experiments.
View Article and Find Full Text PDFChicken liver bile acid binding protein (cL-BABP) is involved in bile acid transport in the liver cytosol. A detailed study of the mechanism of binding and selectivity of bile acids binding proteins towards the physiological pool of bile salts is a key issue for the complete understanding of the role of these proteins and their involvement in cholesterol homeostasis. In the present study, we modeled the ternary complex of cL-BABP with two molecules of bile salts using the data driven docking program HADDOCK on the basis of NMR and mass spectrometry data.
View Article and Find Full Text PDFBy combining NMR relaxation spectroscopy and magnetic resonance imaging techniques, unsalted (us) and salted (s) caviar (Acipenser transmontanus) oocytes were characterized over a storage period of up to 90 days. The aging and the salting effects on the two major cell constituents, water and lipids, were separately assessed. T1 and T2 decays were interpreted by assuming a two-site exchange model.
View Article and Find Full Text PDFThe effects of storage at 4 degrees C on the quantity and quality of chemical components in the caviar from farmed Acipenser transmontanus have been analyzed by SEM, chemical methods, and NMR and MRI techniques. Particular attention has been focused on the lipid components, the distribution and mobility of which were strongly affected by the storage time. MRI and relaxation data indicated that lipids are endowed with two different mobility regimes, one slow (short T1) and one fast (long T1), both lengthening with the storage time.
View Article and Find Full Text PDFApo chicken liver bile acid-binding protein has been structurally characterized by NMR. The dynamic behavior of the protein in its apo- and holo-forms, complexed with chenodeoxycholate, has been determined via (15)N relaxation and steady state heteronuclear (15)N((1)H) nuclear Overhauser effect measurements. The dynamic parameters were obtained at two pH values (5.
View Article and Find Full Text PDFThe temperature (T)-dependence of energy consumption of resting anaerobic frog gastrocnemii exposed to different, changing electrochemical gradients was assessed. To this aim, the rate of ATP resynthesis (delta approximately P/deltat) was determined by (31)P- and (1)H-MRS as the sum of the rates of PCr hydrolysis (delta[PCr]/deltat) and of anaerobic glycolysis (delta[La]/ deltat, based on a approximately P/La ratio of 1.5).
View Article and Find Full Text PDFThe high resolution three-dimensional structure of the newly discovered plant viscotoxin C1, from the Asiatic Viscum album ssp. Coloratum ohwi, has been determined in solution by (1)H NMR spectroscopy at pH 3.6 and 285 K.
View Article and Find Full Text PDFEnvironmental stress, such as low temperature, extracellular acidosis and anoxia, is known to play a key role in metabolic regulation. The aim of the present study was to gain insight into the combined temperature-pH regulation of metabolic rate in frog muscle, i.e.
View Article and Find Full Text PDFBeta-lactoglobulins, belonging to the lipocalin family, are a widely studied group of proteins, characterized by the ability to solubilize and transport hydrophobic ligands, especially fatty acids. Despite many reports, the mechanism of ligand binding and the functional role of these proteins is still unclear, and many contradicting concepts are often encountered in the literature. In the present paper the comparative analysis of the binding properties of beta-lactoglobulins has been performed using sequence-derived information, structure-based electrostatic calculations, docking simulations, and NMR experiments.
View Article and Find Full Text PDFChicken liver basic fatty acid binding protein (Lb-FABP) belongs to the basic-type fatty acid binding proteins, a novel group of proteins isolated from liver of different non mammalian species whose structure is not known. The structure of Lb-FABP has been solved by (1)H NMR. The overall fold of Lb-FABP, common to the other proteins of the family, consists of ten antiparallel beta-strands organised in two nearly ortogonal beta-sheets with two alpha helices closing the protein cavity where small hydrophobic ligands can be bound.
View Article and Find Full Text PDFSso7d is a small basic protein consisting of 62 amino acids isolated from the thermoacidophilic archeobacterium Sulfolobus solfataricus. The protein is endowed with DNA binding properties, RNase activity, and the capability of rescuing aggregated proteins in the presence of ATP. In this study, the electrostatic properties of Sso7d are investigated by using the Poisson-Boltzmann calculation of the surface potential distribution and following by NMR spectroscopy the proton chemical shift pH titration of acidic residues.
View Article and Find Full Text PDFIn an attempt to characterize the early folding events in bovine beta-lactoglobulin (BLG), a set of peptides, covering the flexible N-terminal region and the stable C-terminus beta-core, was synthesized and analyzed by circular dichroism and by nuclear magnetic resonance in water, trifluoroethanol (TFE), and sodium dodecyl sulfate (SDS) below and above the critical micellar concentration. The role of local and long-range hydrophobic interactions in guiding the folding has been investigated. For the peptide fragment covering the more flexible N-terminal region of BLG (beta-strands A, B), where both theoretical predictions and kinetic refolding experiments suggested the formation of non-native alpha-helix, no native long-range contacts were identified, and a helical secondary structure was stabilized only in the presence of 25 mM SDS.
View Article and Find Full Text PDF