Publications by authors named "Lucia Y Zakharova"

Article Synopsis
  • Surfactants, especially non-ionic ones, are crucial in pesticide formulations, improving effectiveness without altering solution properties like pH, but piperidinium surfactants with carbamate fragments might enhance efficacy more than conventional non-ionic types.
  • The study evaluated new piperidinium surfactants’ performance in enhancing imidacloprid, demonstrating that a 0.1% concentration substantially reduces the lethal dose required to combat the greenhouse whitefly pest.
  • Results indicate that these surfactants boost imidacloprid's effectiveness by increasing its concentration on leaf surfaces and aiding its penetration into plants, demonstrating their potential as effective adjuvants in pest control.
View Article and Find Full Text PDF

The biomimetic nature of supramolecular systems, the structural similarity of synthetic surfactants to biomolecules (lipids, proteins), provide them with high membranotropy, the ability to overcome biological barriers, and affinity towards biosubstances. Despite rather high toxicity cationic surfactants are of importance as antimicrobial agents, gene nanocarriers and mitochondria targeted ligands. To minimize this limitation, cationic amphiphilic matrix undergoes modification with various functional groups.

View Article and Find Full Text PDF

A central event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of senile plaques composed of aggregated amyloid-β (Aβ) peptides. The main class of drugs currently used for the treatment of AD are the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. In this study, it has been shown that Aβ augmented AChE activity in vitro, maximum activation of 548 ± 5% was achieved following 48 h of incubation with 10 μM of Aβ, leading to a 7.

View Article and Find Full Text PDF

In this focus article, we provide a scrutinizing analysis of transmission electron microscopy (TEM) and dynamic light scattering (DLS) as the two common methods to study the sizes of nanoparticles with focus on the application in pharmaceutics and drug delivery. Control over the size and shape of nanoparticles is one of the key factors for many biomedical systems. Particle size will substantially affect their permeation through biological membranes.

View Article and Find Full Text PDF

In this study, a water-soluble form of haloperidol was obtained by coaggregation with calix[4]resorcinol bearing viologen groups on the upper rim and decyl chains on the lower rim to form vesicular nanoparticles. The formation of nanoparticles is achieved by the spontaneous loading of haloperidol into the hydrophobic domains of aggregates based on this macrocycle. The mucoadhesive and thermosensitive properties of calix[4]resorcinol-haloperidol nanoparticles were established by UV-, fluorescence and CD spectroscopy data.

View Article and Find Full Text PDF

Objectives: This study was aimed at the investigation of the supramolecular systems based on cationic surfactants bearing cyclic head groups (imidazolium and pyrrolidinium) and polyanions (polyacrylic acid (PAA) and human serum albumin (HSA)), and factors governing their structural behavior to create functional nanosystems with controlled properties. Research hypothesis. Mixed PE-surfactant complexes based on oppositely charged species are characterized by multifactor behavior strongly affected by the nature of both components.

View Article and Find Full Text PDF

Chitosan-decorated liposomes were proposed for the first time for the intranasal delivery of acetylcholinesterase (AChE) reactivator pralidoxime chloride (2-PAM) to the brain as a therapy for organophosphorus compounds (OPs) poisoning. Firstly, the chitosome composition based on phospholipids, cholesterol, chitosans (Cs) of different molecular weights, and its arginine derivative was developed and optimized. The use of the polymer modification led to an increase in the encapsulation efficiency toward rhodamine B (RhB; ~85%) and 2-PAM (~60%) by 20% compared to conventional liposomes.

View Article and Find Full Text PDF
Article Synopsis
  • * Techniques like light scattering, electron microscopy, and fluorescence spectroscopy were used to confirm the formation of nanosized lipoplexes (100-200 nm) via various mechanisms including electrostatic and hydrophobic interactions.
  • * The research found that the length of the surfactant's hydrocarbon tail and the type of nucleic acid significantly impact their interaction, with MPI-n/DNA complexes showing reduced cytotoxicity in cancer cells and effectiveness comparable to Lipofectamine 3000 for transfection.
View Article and Find Full Text PDF

One of the main problems in the treatment of poisoning with organophosphorus (OPs) inhibitors of acetylcholinesterase (AChE) is low ability of existing reactivators of AChE that are used as antidotes to cross the blood-brain barrier (BBB). In this work, modified cationic liposomes were developed that can penetrate through the BBB and deliver the reactivator of AChE pralidoxime chloride (2-PAM) into the brain. Liposomes were obtained on the basis of phosphatidylcholine and imidazolium surfactants.

View Article and Find Full Text PDF

New hybrid liposomes based on cationic amphiphiles with different structures of the head group (cetyltrimethylammonium bromide (CTAB), 3-hexadecyl-1-hydroxyethylimidazolium bromide (IA-16(OH)), 1-(butylcarbamoyl)oxyethyl-3-hexadecylimidazolium bromide (IAC 16(Bu)), and hexadecylmethylpyrrolidinium bromide (PR-16)) were developed for transdermal administration of nonsteroidal anti-inflammatory drugs. The different surfactant/lipid compositions were studied to obtain stable liposomes with high functionality. The hydrodynamic diameter of cationic liposomes was ∼110 nm.

View Article and Find Full Text PDF

The combined method of treating malignant neoplasms using photodynamic therapy and chemotherapy is undoubtedly a promising and highly effective treatment method. The development and establishment of photodynamic cancer therapy is closely related to the creation of sensitizers based on porphyrins. The present study is devoted to the investigation of the spectroscopic, aggregation, and solubilization properties of the supramolecular system based on 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TSPP) and lanthanum-containing surfactant (LaSurf) in an aqueous medium.

View Article and Find Full Text PDF

Novel cationic amphiphiles of the 3-alkyl-1-(4-methoxyphenyl)-1-imidazol-3-ium bromide series bearing methoxyphenyl fragments (MPI-) have been synthesized. Their aggregation properties in aqueous solutions, solubilization capacity, and hemolytic and antimicrobial activities have been investigated by a number of physicochemical methods. Using tensiometry, conductometry, and fluorescence spectroscopy, it was shown that the MPI- have lower CMCs than their nonfunctionalized counterparts.

View Article and Find Full Text PDF

New 1-cetyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide complexes with copper(II) bromide and lanthanum(III) nitrate were characterized using dynamic light scattering and transmission electron microscopy, with self-assembly and the morphological behavior elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on enhancing the colloidal stability and effectiveness of two formulations of the anti-inflammatory drug indomethacin: nanoemulsions and microemulsions using noncovalent modifications with cationic surfactants.
  • The addition of cetyltrimethylammonium bromide and its carbamate analogue improved the stability and prolonged the release of indomethacin, showing sustained drug release compared to the free drug.
  • In testing for anti-inflammatory activity in a rat model, the modified formulations with carbamate surfactants were more effective at reducing edema, with nanoemulsions performing better than microemulsions in certain cases.
View Article and Find Full Text PDF

Antimicrobial, membranotropic and cytotoxic properties of dicationic imidazolium surfactants of n-s-n (Im) series with variable length of alkyl group (n = 8, 10, 12, 14, 16) and spacer fragment (s = 2, 3, 4) were explored and compared with monocationic analogues. Their activity against a representative range of Gram-positive and Gram-negative bacteria, and also fungi, is characterized. The relationship between the biological activity and the structural features of these compounds is revealed, with the hydrophobicity emphasized as a key factor.

View Article and Find Full Text PDF

The mucus layer acts as a selective diffusion barrier that has an important effect on the efficiency of drug delivery systems in the human body. In this regard, currently the drug nanocarriers of various sizes and compositions are being widely developed to study their mucoadhesive properties i.e.

View Article and Find Full Text PDF

New liposomes modified with pyrrolidinium surfactants containing a hydroxyethyl fragment (CPB, n = 12, 14, 16) were prepared for transdermal delivery of non-steroidal anti-inflammatory drugs. In order to obtain the optimal composition, the surfactant/lipid molar ratio (0.02/1; 0.

View Article and Find Full Text PDF

Novel nanocomposite system based on mesoporous silica nanoparticles (MSNs) noncovalently modified with hexadecyltriphenylphosphonium bromide (HTPPB) has been prepared, thoroughly characterized and used for encapsulation of model cargo Rhodamine B (RhB). The high encapsulation efficacy of this dye by HTPPB-modified mesoporous particles was demonstrated by spectrophotometry and thermography techniques. The bioavailability of MSN@HTPPB was testified.

View Article and Find Full Text PDF

The solution behavior and physicochemical characteristics of polymer-colloid complexes based on cationic imidazolium amphiphile with a dodecyl tail (IA-12) and polyacrylic acid (PAA) or DNA decamer (oligonucleotide) were evaluated using tensiometry, conductometry, dynamic and electrophoretic light scattering and fluorescent spectroscopy and microscopy. It has been established that PAA addition to the surfactant system resulted in a ca. 200-fold decrease in the aggregation threshold of IA-12, with the hydrodynamic diameter of complexes ranging within 100-150 nm.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing new surfactants containing imidazolium fragments for their potential as effective microbicides and their relationships between structure and biological activity.
  • * The research involved testing these compounds for antimicrobial, hemolytic, and cytotoxic activities, using methods like tensiometry, serial dilution, and flow cytometry for analysis.
  • * Results indicated that some surfactants had strong antimicrobial effects against various bacteria, including resistant strains, with minimal hemolytic activity and notable selectivity in cytotoxic effects on cancer cells, particularly highlighting one compound showing high potential against specific cancer cell lines.
View Article and Find Full Text PDF

Hydroxyethyl bearing gemini surfactants, alkanediyl-α,ω-bis(N-hexadecyl-N-2-hydroxyethyl-N-methylammonium bromide), 16-s-16(OH), were used to augment phosphatidylcholine based liposomes to achieve higher stability and enhanced cellular uptake and penetration. The developed liposomes were loaded with rhodamine B, doxorubicin hydrochloride, pralidoxime chloride to investigate release properties, cytotoxicity in vitro, as well as ability to cross the blood-brain barrier. At molar ratio of 35:1 (lipid:surfactant) the formulation was found to be of low toxicity, stable for two months, and able to deliver rhodamine B beyond the blood-brain barrier in rats.

View Article and Find Full Text PDF

New lipid-based nanomaterials and multi-target directed ligands (MTDLs) based on sterically hindered phenol, containing a quaternary ammonium moiety (SHP-s-R, with s = 2,3) of varying hydrophobicity (R = CH2Ph and CnH2n+1, with n = 8, 10, 12, 16), have been prepared as potential drugs against Alzheimer's disease (AD). SHP-s-R are inhibitors of human cholinesterases with antioxidant properties. The inhibitory potency of SHP-s-R and selectivity ratio of cholinesterase inhibition were found to significantly depend on the length of the methylene spacer (s) and alkyl chain length.

View Article and Find Full Text PDF

Here we report the synthesis and biological evaluation of a series of new 2-hydroxybenzylphosphonium salts (QPS) with antimicrobial and antitumor dual action. The most active compounds exhibit antimicrobial activity at a micromolar level against Gram-positive bacteria Sa (ATCC 209p and clinical isolates), Bc (1-2 μM) and fungi Tm and Ca, and induced no notable hemolysis at MIC. The change in nature of substituents of the same length led to a drastic change of biological activity.

View Article and Find Full Text PDF

Diabetes mellitus, an incurable metabolic disease, is characterized by changes in the homeostasis of blood sugar levels, being the subcutaneous injection of insulin the first line treatment. This administration route is however associated with limited patient's compliance, due to the risk of pain, discomfort and local infection. Nanoparticles have been proposed as insulin carriers to make possible the administration of the peptide via friendlier pathways without the need of injection, i.

View Article and Find Full Text PDF
Article Synopsis
  • The addition of specific chemical groups to macrocycles can enhance their properties, including stability, solubility, and biological activity.
  • A new resorcin[4]arene with -methyl-d-glucamine and n-decyl chains was synthesized and shown to self-assemble in water, acting as a potential drug nanocontainer.
  • When tested, the DOX-loaded resorcin[4]arene aggregates exhibited improved effectiveness in inducing apoptosis in cancer cells compared to free DOX.
View Article and Find Full Text PDF