Publications by authors named "Lucia Spangenberg"

Background: Neuronal Ceroid Lipofuscinosis (NCL) disorders, recognized as the primary cause of childhood dementia globally, constitute a spectrum of genetic abnormalities. CLN8, a subtype within NCL, is characterized by cognitive decline, motor impairment, and visual deterioration. This study focuses on an atypical case with congenital onset and a remarkably slow disease progression.

View Article and Find Full Text PDF

Understanding the intricate molecular mechanisms governing the fate of human adipose-derived stem cells (hASCs) is essential for elucidating the delicate balance between adipogenic and osteogenic differentiation in both healthy and pathological conditions. Long non-coding RNAs (lncRNAs) have emerged as key regulators involved in lineage commitment and differentiation of stem cells, operating at various levels of gene regulation, including transcriptional, post-transcriptional, and post-translational processes. To gain deeper insights into the role of lncRNAs' in hASCs' differentiation, we conducted a comprehensive analysis of the lncRNA transcriptome (RNA-seq) and translatome (polysomal-RNA-seq) during a 24 h period of adipogenesis and osteogenesis.

View Article and Find Full Text PDF

Alternative polyadenylation (APA) increases transcript diversity through the generation of isoforms with varying 3' untranslated region (3' UTR) lengths. As the 3' UTR harbors regulatory element target sites, such as miRNAs or RNA-binding proteins, changes in this region can impact post-transcriptional regulation and translation. Moreover, the APA landscape can change based on the cell type, cell state, or condition.

View Article and Find Full Text PDF

The Kondo-Fu type of spondyloepiphyseal dysplasia (SEDKF) is a rare skeletal dysplasia caused by homozygous or compound heterozygous mutations in the gene. The gene encodes a protein that is involved in the regulation of cholesterol and fatty acid metabolism. Mutations in can lead to reduced levels of these lipids, which can have a number of effects on development, including skeletal anomalies, growth retardation, and elevated levels of blood lysosomal enzymes.

View Article and Find Full Text PDF

Background: Common variable immunodeficiency disorders (CVIDs), which are primary immunodeficiencies characterized by the failure of primary antibody production, typically present with recurrent bacterial infections, decreased antibody levels, autoimmune features, and rare atypical manifestations that can complicate diagnosis and management. Although most cases are sporadic, approximately 10% of the patients may have a family history of immunodeficiency. Genetic causes involving genes related to B-cell development and survival have been identified in only a small percentage of cases.

View Article and Find Full Text PDF

The SPATA5 gene encodes a 892 amino-acids long protein that has a putative mitochondrial targeting sequence and has been proposed to function in maintenance of mitochondrial function and integrity during mouse spermatogenesis. Several studies have associated homozygous or compound heterozygous mutations in SPATA5 gene to microcephaly, intellectual disability, seizures and hearing loss. This suggests a role of the SPATA5 gene also in neuronal development.

View Article and Find Full Text PDF
Article Synopsis
  • A 53-year-old woman in Uruguay was diagnosed with Shwachman-Diamond syndrome (SDS), a rare genetic disorder, presenting atypically in adulthood rather than the usual pediatric onset.
  • She exhibited bone marrow failure, anemia, thrombocytopenia, and unusual symptoms like cirrhosis and skin issues, which led to various tests before reaching the correct diagnosis through whole-exome sequencing.
  • This case highlights the importance of genetic testing, as an earlier diagnosis might have improved her medical management and overall outcome, addressing symptoms that had been unrecognized for a decade.
View Article and Find Full Text PDF

Background: Lissencephaly (LIS) is a cortical malformation, characterized by smooth or nearly smooth cerebral surface and a shortage of gyral and sulcal development, which is caused by deficient neuronal migration during embryogenesis. Neuronal migration involves many gene products, among which is the product of the PAFAH1B1 gene, associated with this disease. LIS is a rare disease, characterized by low population frequency, and with non-specific clinical symptoms such as early epilepsy, developmental delay or cerebral palsy-like motor problems.

View Article and Find Full Text PDF

The ancestry of each locus of the genome can be estimated (local ancestry) based on sequencing or genotyping information together with reference panels of ancestral source populations. The length of those ancestry-specific genomic segments are commonly used to understand migration waves and admixture events. In short time scales, it is often of interest to determine the existence of the most recent unadmixed ancestor from a specific population t generations ago.

View Article and Find Full Text PDF

Multiple Sclerosis is an autoimmune disease with an unknown etiology. Both genetic and environmental factors are believed to trigger MS autoimmunity. Among the environmental factors, infectious agents have been extensively investigated, and the Human Endogenous Retroviruses (HERVs), especially HERV-W, are believed to be associated with MS pathogenesis.

View Article and Find Full Text PDF

The Amerindian group known as the Charrúas inhabited Uruguay at the timing of European colonial contact. Even though they were extinguished as an ethnic group as a result of a genocide, Charrúan heritage is part of the Uruguayan identity both culturally and genetically. While mitochondrial DNA studies have shown evidence of Amerindian ancestry in living Uruguayans, here we undertake whole-genome sequencing of 10 Uruguayan individuals with self-declared Charruan heritage.

View Article and Find Full Text PDF
Article Synopsis
  • * Between November 2020 and April 2021, the B.1.1.28 sublineage, designated as P.6, emerged as the dominant variant in Uruguay, featuring specific spike mutations (Q675H and Q677H) that may increase its transmissibility.
  • * By April 2021, lineage P.6 was supplanted by the more concerning variant P.1, highlighting the need for ongoing global monitoring of the mutations present in different viral strains.
View Article and Find Full Text PDF

Human mitochondrial diseases are a group of heterogeneous diseases caused by defects in oxidative phosphorylation, due to mutations in mitochondrial (mtDNA) or nuclear DNA. The diagnosis of mitochondrial disease is challenging since mutations in multiple genes can affect mitochondrial function, there is considerable clinical variability and a poor correlation between genotype and phenotype. Herein we assessed mitochondrial function in peripheral blood mononuclear cells (PBMCs) and platelets from volunteers without known metabolic pathology and patients with mitochondrial disease.

View Article and Find Full Text PDF

Background: Missing data is a common issue in different fields, such as electronics, image processing, medical records and genomics. They can limit or even bias the posterior analysis. The data collection process can lead to different distribution, frequency, and structure of missing data points.

View Article and Find Full Text PDF

We developed a genomic surveillance program for real-time monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) in Uruguay. We report on a PCR method for SARS-CoV-2 VOCs, the surveillance workflow, and multiple independent introductions and community transmission of the SARS-CoV-2 P.1 VOC in Uruguay.

View Article and Find Full Text PDF
Article Synopsis
  • Corticosteroid-binding globulin (CBG) is crucial for transporting cortisol in the body, binding about 90% of it in circulation.
  • A new variant called "CBG Montevideo" causes a significant drop in CBG levels, leading to low cortisol in a 7-year-old boy and his mother, presenting symptoms like hypoglycemia and chronic fatigue.
  • Unlike previous cases linked to CBG variants, this variant suggests CBG may play a special role in regulating glucose levels and communication between cortisol and the brain, despite normal free cortisol levels.
View Article and Find Full Text PDF

Uruguay is one of the few countries in the Americas that successfully contained the coronavirus disease 19 (COVID-19) epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this ∼1,100 km uninterrupted dry frontier.

View Article and Find Full Text PDF
Article Synopsis
  • * Whole genome sequencing (WGS) has improved diagnostic rates for these diseases, achieving around 41% in pediatrics and up to 48.5% in neurology cases.
  • * Successful application of WGS led to a diagnosis for a 7-year-old girl with a severe artery disease linked to mutations in the YY1AP1 gene, highlighting its potential as a diagnostic tool for rare diseases and expanding the understanding of associated mutations.
View Article and Find Full Text PDF

Background: The etiology of many genetic diseases is challenging. This is especially true for developmental disorders of the central nervous system, since several genes can be involved. Many of such pathologies are considered rare diseases, since they affect less than 1 in 2000 people.

View Article and Find Full Text PDF

Background: Some multifunctional cellular proteins, as the monocyte chemotactic protein-induced protein 1 (ZC3H12A/MCPIP1) and the cyclin-dependent kinase inhibitor CDKN1A/p21, are able to modulate the cellular susceptibility to the human immunodeficiency virus type 1 (HIV-1). Several studies showed that CDKN1A/p21 is expressed at high levels ex vivo in cells from individuals who naturally control HIV-1 replication (HIC) and a recent study supports a coordinate regulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in a model of renal carcinoma cells. Here, we explored the potential associations between mRNA expression of ZC3H12A/MCPIP1 and CDKN1A/p21 in HIC sustaining undetectable (elite controllers-EC) or low (viremic controllers-VC) viral loads.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is an inflammatory autoimmune neurologic disease that causes progressive destruction of myelin sheath and axons. Affecting more than 2 million people worldwide, MS may presents distinct clinical courses. However, information regarding key gene expression and genic pathways related to each clinical form is still limited.

View Article and Find Full Text PDF

Posttranscriptional regulation plays a fundamental role in the biology of embryonic stem cells (ESCs). Many studies have demonstrated that multiple mRNAs are coregulated by one or more RNA-binding proteins (RBPs) that orchestrate mRNA expression. A family of RBPs, which is known as the Pumilio-FBF (PUF) family, is highly conserved among different species and has been associated with the undifferentiated and differentiated states of different cell lines.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have been found to be involved in many biological processes, including the regulation of cell differentiation, but a complete characterization of lncRNA is still lacking. Additionally, there is evidence that lncRNAs interact with ribosomes, raising questions about their functions in cells. Here, we used a developmentally staged protocol to induce cardiogenic commitment of hESCs and then investigated the differential association of lncRNAs with polysomes.

View Article and Find Full Text PDF

An important tool to study the regulation of gene expression is the sequencing and the analysis of different RNA fractions: total, ribosome-free, monosomal and polysomal. By comparing these different populations, it is possible to identity which genes are differentially expressed and to get information on how transcriptional and translational regulation modulates cellular function. Therefore, we used this strategy to analyze the regulation of gene expression of human adipose-derived stem cells during the triggering of the adipogenic and osteogenic differentiation.

View Article and Find Full Text PDF