Human manual dexterity relies critically on touch. Robotic and prosthetic hands are much less dexterous and make little use of the many tactile sensors available. We propose a framework modeled on the hierarchical sensorimotor controllers of the nervous system to link sensing to action in human-in-the-loop, haptically enabled, artificial hands.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2022
Tactile feedback is relevant in a broad range of human-machine interaction systems (e.g. teleoperation, virtual reality and prosthetics).
View Article and Find Full Text PDFStroke patients suffer from impairments of both motor and somatosensory functions. The functional recovery of upper extremities is one of the primary goals of rehabilitation programs. Additional somatosensory deficits limit sensorimotor function and significantly affect its recovery after the neuromotor injury.
View Article and Find Full Text PDFThis paper proposes a validation method of the fabrication technology of a screen-printed electronic skin based on polyvinylidene fluoride-trifluoroethylene P(VDF-TrFE) piezoelectric polymer sensors. This required researchers to insure, through non-direct sensor characterization, that printed sensors were working as expected. For that, we adapted an existing model to non-destructively extract sensor behavior in pure compression (i.
View Article and Find Full Text PDFAmong most challenging open issues in prosthetic research is the development of a robust bidirectional interface between a prosthesis and its user. Commercially available prosthetic systems are mechanically advanced, but they do not provide somatosensory feedback. Here, we present a novel non-invasive interface for multichannel electrotactile feedback, comprising a matrix of 24 pads, and we investigate the ability of able-bodied human subjects to localize the electrotactile stimulus delivered through the matrix.
View Article and Find Full Text PDFIn the past few years a new scenario for robot-based applications has emerged. Service and mobile robots have opened new market niches. Also, new frameworks for shop-floor robot applications have been developed.
View Article and Find Full Text PDFThe reference electronic skin is a sensor array based on PVDF (Polyvinylidene fluoride) piezoelectric polymers, coupled to a rigid substrate and covered by an elastomer layer. It is first evaluated how a distributed normal force (Hertzian distribution) is transmitted to an extended PVDF sensor through the elastomer layer. A simplified approach based on Boussinesq's half-space assumption is used to get a qualitative picture and extensive FEM simulations allow determination of the quantitative response for the actual finite elastomer layer.
View Article and Find Full Text PDFMyoelectric prostheses are successfully controlled using muscle electrical activity, thereby restoring lost motor functions. However, the somatosensory feedback from the prosthesis to the user is still missing. The sensory substitution methods described in the literature comprise mostly simple position and force sensors combined with discrete stimulation units.
View Article and Find Full Text PDFTactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch.
View Article and Find Full Text PDF