Publications by authors named "Lucia R Rodrigues"

The littoral zone is an essential compartment for lake biota because of its high productivity and diversity. Moreover, phytoplankton is expected to have non-equilibrium dynamics on it. The study's aimed to explore phytoplankton in the littoral zone of a shallow lake over a short-term scale.

View Article and Find Full Text PDF

Salinization is a threat that affects aquatic ecosystems worldwide. As primary producers, freshwater macrophytes are of paramount importance in these ecosystems, however, information regarding the potential impacts of salinization upon these organisms is still scarce. In this review we provide a comprehensive and updated discussion of how freshwater macrophytes deal with salinity increase in freshwaters.

View Article and Find Full Text PDF

The present study evaluated the potential for biogas generation from microalgae (MA) biomass and macrophytes used in vertical flow constructed wetlands (VFCW). The samples were obtained by separation and collection of MA after a hydraulic retention time of 14 days, frozen and taken to the laboratory, while the macrophytes of VFCW were obtained, by pruning, every 6 months. The obtained results presented reductions of 63.

View Article and Find Full Text PDF

Wastewater treatment using constructed wetlands (CWs) based on natural wetlands constitute a viable alternative with excellent cost and benefit, presenting themselves as efficient technologies in the secondary and tertiary treatment of wastewaters with low implementation, operation, and maintenance costs. The present study aims to evaluate the use of bamboo species, as an alternative to macrophytes, frequently used in CWs, through bibliometric analysis, besides to a review based on case studies. The maps generated by the VOSviewer software and by the analyses of the Web of Science and Scopus databases allowed for a review of typical concepts of CWs, in addition to revealing potential benefits of using bamboos in CWs, such as their hyperaccumulation capacity and bioproduct generation.

View Article and Find Full Text PDF

The present study aimed to develop a pilot-scale integrated system composed of anaerobic biofilter (AF), a floating treatment wetland (FTW) unit, and a vertical flow constructed wetland coupled with a microbial fuel cell (CW-MFC) and a reactive bed filter (RBF) for simultaneously decentralized urban wastewater treatment and bioelectricity generation. The first treatment stage (AF) had 1450 L and two compartments: a settler and a second one filled with plastic conduits. The two CWs (1000 L each) were vegetated with mixed plant species, the first supported in a buoyant expanded polyethylene foam and the second (CW-MFC) filled with pebbles and gravel, whereas the RBF unit was filled with P adsorbent material (light expanded clay aggregate, or LECA) and sand.

View Article and Find Full Text PDF

Meteorological features influence the dynamics of aquatic ecosystems and consequently their biotas. This study aimed to identify the meteorological drivers of phytoplankton biomass (chlorophyll a), sampled seasonally over a period of 12 years (2001-2013) in Lake Mangueira, a large shallow subtropical lake in southern Brazil. The lake is 90 km long and 3-10 km wide with a mean depth of 3 m and is oligo-mesotrophic and highly affected by wind action.

View Article and Find Full Text PDF

Floating treatment wetlands (FTW) are technologies that have stood out for their efficiency, ease of installation and maintenance. They consist of macrophytes emerging in a floating structure that keep the plant roots in direct contact with the effluent regardless of the water flow variation over time, allowing the removal of pollutants by various processes. The application of FTWs for the treatment of domestic wastewater has the advantage of low costs in terms of removing nutrients and at the same time reducing the cost of maintenance and energy consumption when compared to the conventional centralized treatment of effluent.

View Article and Find Full Text PDF

Constructed floating wetlands have been employed worldwide to treat effluents and to ameliorate water quality of water resources. However, the period of macrophyte establishment into the hydroponic functioning has not been specifically addressed. This paper reports root growth and nutrient removal of Typha domingensis and Schoenoplectus californicus in a floating structure without growth substrates over the period of 11 weeks of macrophyte establishment.

View Article and Find Full Text PDF

The objective of the present study was to develop a combined system composed of anaerobic biofilter (AF) and floating treatment wetlands (FTW) coupled with microbial fuel cells (MFC) in the buoyant support for treating wastewater from a university campus and generate bioelectricity. The raw wastewater was pumped to a 1450 L tank, operated in batch flow and filled with plastic conduits. The second treatment stage was composed of a 1000 L FTW box with a 200 L plastic drum inside (acting as settler in the entrance) and vegetated with mixed ornamental plants species floating in a polyurethane support fed once a week with 700 L of wastewater.

View Article and Find Full Text PDF

This study evaluated the performance of urban wastewater treatment in pilot-plant by an integrated system consisting of anaerobic reactor, microalgae cultivation, Venturi tube ozone recirculation, coagulation/flocculation with tannin-based agent natural coagulant, and dissolved air flotation (DAF). Ozone concentrations (without ozone, 0.13 and 0.

View Article and Find Full Text PDF

The objectives of the present study were to apply different, toxicological assays for monitoring the toxicity of treated and untreated urban effluents produced at a university campus. The research was conducted at the wastewater treatment plant of the University of Santa Cruz do Sul, (UNISC), from october 2018 to april 2019. An integrated system with, anaerobic reactor (AR), microalgae (MA) and constructed wetlands (CWs) was, proposed for detoxification of the wastewaters produced at the university campus with a hydraulic detention time of 17 days.

View Article and Find Full Text PDF

Understanding species linkages and energy transfer is a basic goal underlying any attempt at ecosystem analysis. Although the first food-web studies were based on gut contents of captured specimens, the assessment of stable isotopes, mainly δ13C and δ15N, has become a standard methodology for wide-range analyses in the last 30 years. Stable isotopes provide information on the trophic level of species, food-web length, and origin of organic matter ingested by consumers.

View Article and Find Full Text PDF

Temporary wetlands are short-term alternative ecosystems formed by flooding for irrigation of areas used for rice farming. The goal of this study is to describe the development cycle of rice fields as temporary wetlands in southern Brazil, evaluating how this process affect the gas production (CH4 and CO2) in soil with difference % carbon and organic matter content. Two areas adjacent to Lake Mangueira in southern Brazil were used during a rice-farming cycle.

View Article and Find Full Text PDF