Publications by authors named "Lucia Pokorna"

Invasion of human red blood cells by the malaria parasite Plasmodium falciparum is followed by dramatic modifications of erythrocytes properties, including de novo formation of new membrane systems. Lipid transfer proteins from both the parasite and the host cell are most likely an important part of those membrane remodeling processes. Using bioinformatics and in silico structural analysis, we have identified five P.

View Article and Find Full Text PDF

Yeast Sec14-like phosphatidylinositol transfer proteins (PITPs) contain a hydrophobic cavity capable of accepting a single molecule of phosphatidylinositol (PI) or another molecule in a mutually exclusive manner. We report here that two yeast Sec14 family PITPs, Pdr16p (Sfh3p) and Pdr17p (Sfh4p), possess high-affinity binding and transfer towards lanosterol. To our knowledge, this is the first identification of lanosterol transfer proteins.

View Article and Find Full Text PDF

The fission yeast Schizosaccharomyces pombe is an important model organism for the study of fundamental questions in eukaryotic cell and molecular biology. A plethora of cellular processes are membrane associated and/or dependent on the proper functioning of cellular membranes. Phospholipids are not only the basic building blocks of cellular membranes; they also serve as precursors to numerous signaling molecules.

View Article and Find Full Text PDF

Yeast phosphatidylinositol transfer protein (PITP) Pdr17 is an essential component of the complex required for decarboxylation of phosphatidylserine (PS) to phosphatidylethanolamine (PE) at a non-mitochondrial location. According to current understanding, this process involves the transfer of PS from the endoplasmic reticulum to the Golgi/endosomes. We generated a Pdr17 mutant protein to better understand the mechanism by which Pdr17p participates in the processes connected to the decarboxylation of PS to PE.

View Article and Find Full Text PDF

Cardiolipin (CL) is a unique lipid component of mitochondria in all eukaryotes. It is important for the architecture of mitochondrial membranes and for mitochondrial dynamics. CL also creates a highly specific microenvironment of mitochondrial protein machineries.

View Article and Find Full Text PDF

In yeast, phosphatidylglycerol (PG) is a minor phospholipid under standard conditions; it can be utilized for cardiolipin (CL) biosynthesis by CL synthase, Crd1p, or alternatively degraded by the phospholipase Pgc1p. The Saccharomyces cerevisiae deletion mutants crd1Δ and pgc1Δ both accumulate PG. Based on analyses of the phospholipid content of pgc1Δ and crd1Δ yeast, we revealed that in yeast mitochondria, two separate pools of PG are present, which differ in their fatty acid composition and accessibility for Pgc1p-catalyzed degradation.

View Article and Find Full Text PDF