FHL1 gene locates in the Xq26 region and encodes for four and half LIM domain protein 1. It plays a crucial role in muscle cells and mutations in FHL1 are related to muscular dystrophy (MD). Peripheral blood mononuclear cells (PBMCs) were obtained from 2 family patients with MD that carry a pathogenic missense mutation in FHL1 (c.
View Article and Find Full Text PDFThe arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease characterized by the progressive replacement of contractile myocardium by fibro-fatty adipose tissue, that generates ventricular arrhythmias and sudden death in patients. The ACM has a genetic origin with alterations in desmosomal genes with the most commonly mutated being the PKP2 gene. We generated two CRISPR/Cas9 edited iPSCs lines, one iPSC line with a point mutation in PKP2 reported in patients with ACM and another iPSC line with a premature stop codon to knock-out the same gene.
View Article and Find Full Text PDFSomatic cell nuclear transfer (SCNT) is a method with unique ability to reprogram the epigenome of a fully differentiated cell. However, its efficiency remains extremely low. In this work, we assessed and combined two simple strategies to improve the SCNT efficiency in the bovine.
View Article and Find Full Text PDFCell death experiments are routinely done in many labs around the world, these experiments are the backbone of many assays for drug development. Cell death detection is usually performed in many ways, and requires time and reagents. However, cell death is preceded by slight morphological changes in cell shape and texture.
View Article and Find Full Text PDFThe application of new technologies for gene editing in horses may allow the generation of improved sportive individuals. Here, we aimed to knock out the myostatin gene (MSTN), a negative regulator of muscle mass development, using CRISPR/Cas9 and to generate edited embryos for the first time in horses. We nucleofected horse fetal fibroblasts with 1, 2 or 5 µg of 2 different gRNA/Cas9 plasmids targeting the first exon of MSTN.
View Article and Find Full Text PDFPIWI-interacting RNAs (piRNAs) are a class of non-coding RNAs initially thought to be restricted exclusively to germline cells. In recent years, accumulating evidence has demonstrated that piRNAs are actually expressed in pluripotent, neural, cardiac and even cancer cells. However, controversy remains around the existence and function of somatic piRNAs.
View Article and Find Full Text PDFCell reprogramming has been well described in mouse and human cells. The expression of specific microRNAs has demonstrated to be essential for pluripotent maintenance and cell differentiation, but not much information is available in domestic species. We aim to generate horse iPSCs, characterize them and evaluate the expression of different microRNAs (miR-302a,b,c,d, miR-205, miR-145, miR-9, miR-96, miR-125b and miR-296).
View Article and Find Full Text PDFMicroRNAs are small non-coding RNAs involved in post-transcriptional regulation of gene expression related to many cellular functions. We performed a small-RNAseq analysis of cardiac differentiation from pluripotent stem cells. Our analyses identified some new aspects about microRNA expression in this differentiation process.
View Article and Find Full Text PDFThe demand for equine cloning as a tool to preserve high genetic value is growing worldwide; however, nuclear transfer efficiency is still very low. To address this issue, we first evaluated the effects of time from cell fusion to activation (<1h, n = 1261; 1-2h, n = 1773; 2-3h, n = 1647) on in vitro and in vivo development of equine embryos generated by cloning. Then, we evaluated the effects of using different nuclear donor cell types in two successive experiments: I) induced pluripotent stem cells (iPSCs) vs.
View Article and Find Full Text PDFIn this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos.
View Article and Find Full Text PDF