Publications by authors named "Lucia Kato"

The recent discovery by Lu and colleagues of Tomasiella immunophila, a bacterium that degrades IgA, offers insights into microbial influences on mucosal immunity and evolutionary immune trade-offs. By modulating IgA titers, T. immunophila influences the dynamic interactions and balance between the host and pathogen.

View Article and Find Full Text PDF

Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively.

View Article and Find Full Text PDF

The gut nourishes rich bacterial communities that affect profoundly the functions of the immune system. The relationship between gut microbiota and the immune system is one of reciprocity. The microbiota contributes to nutrient processing and the development, maturation, and function of the immune system.

View Article and Find Full Text PDF

The main function of the immune system is to protect the host against pathogens. However, unlike the systemic immune system, the gut immune system does not eliminate, but instead nourishes complex bacterial communities and establishes advanced symbiotic relationships. Immunoglobulin A (IgA) is the most abundant antibody isotype in mammals, produced mainly in the gut.

View Article and Find Full Text PDF

A major function of immunoglobulin A (IgA) is to maintain balanced bacterial communities in the gut. We have previously shown that diversification of IgA upon somatic hypermutation (SHM) is critical for IgA function yet the principles governing the selection of IgA in the gut have remained elusive. Here we discuss recent progress in understanding this process as revealed by our studies in mice that lack the inhibitory co-receptor programmed cell death-1 (PD-1).

View Article and Find Full Text PDF

Immunoglobulin A (IgA) is essential to maintain the symbiotic balance between gut bacterial communities and the host immune system. Here we provide evidence that the inhibitory co-receptor programmed cell death-1 (PD-1) regulates the gut microbiota through appropriate selection of IgA plasma cell repertoires. PD-1 deficiency generates an excess number of T follicular helper (T(FH)) cells with altered phenotypes, which results in dysregulated selection of IgA precursor cells in the germinal center of Peyer's patches.

View Article and Find Full Text PDF

An ortholog of activation-induced cytidine deaminase (AID) was, evolutionarily, the first enzyme to generate acquired immune diversity by catalyzing gene conversion and probably somatic hypermutation (SHM). AID began to mediate class switch recombination (CSR) only after the evolution of frogs. Recent studies revealed that the mechanisms for generating immune and genetic diversity share several critical features.

View Article and Find Full Text PDF

Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and class-switch recombination in activated B cells. AID is also known to target nonimmunoglobulin genes and introduce mutations or chromosomal translocations, eventually causing tumors. To identify as-yet-unknown AID targets, we screened early AID-induced DNA breaks by using two independent genome-wide approaches.

View Article and Find Full Text PDF

To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability.

View Article and Find Full Text PDF

Activation-induced cytidine deaminase (AID) is an essential factor for the class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. CSR and SHM are initiated by AID-induced DNA breaks in the S and V regions, respectively. Because truncation or frame-shift mutations at the carboxyl (C)-terminus of AID abolishes CSR but not SHM, the C-terminal region of AID likely is required for the targeting of DNA breaks in the S region.

View Article and Find Full Text PDF