Microcystins (MCs) are a class of toxic secondary metabolites produced by some cyanobacteria strains that endanger aquatic and terrestrial organisms in various freshwater systems. Although patterns in MC occurrence are being recognized, divergences in the global data still hamper our ability to predict the toxicity of cyanobacterial blooms. This study aimed (i) to determine the dynamics of MCs and other cyanopeptides in a tropical reservoir, (ii) to investigate the correlation between peptides and potential cyanotoxin producers (iii) identifying the possible abiotic factors that influence the peptides.
View Article and Find Full Text PDFCyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming.
View Article and Find Full Text PDFElement cycling in aquatic systems is driven chiefly by planktonic processes, and the structure of the planktonic food web determines the efficiency of carbon transfer through trophic levels. However, few studies have comprehensively evaluated all planktonic food-web components in tropical regions. The aim of this study was to unravel the top-down controls (metazooplankton community structure), bottom-up controls (resource availability), and hydrologic (water residence time) and physical (temperature) variables that affect different components of the microbial food web (MFW) carbon stock in tropical reservoirs, through structural equation models (SEM).
View Article and Find Full Text PDF