Publications by authors named "Lucia Helena Innocentini-Mei"

Exploring new biomass sources for nanocellulose (NC) extraction is crucial in elevating the economic value of readily available renewable resources. This study compares NC extracted from acai (Euterpe oleracea) bagasse using different methods: mixed acid hydrolysis, 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) mediation, and ammonium persulfate (APS) oxidations. A comprehensive analysis investigates the impact of each treatment on the physical-chemical properties of the nanoparticles, including chemical structure, crystallinity, morphology, and thermal and suspension stability.

View Article and Find Full Text PDF

β-carotene, a natural dye renowned for its antioxidant and provitamin A activities, is hindered from direct use in food and drug products due to its susceptibility to oxidation, easy isomerization under light, heat, or acidic conditions, as well as its low water solubility and oral bioavailability. In this study, we addressed these challenges by loading β-carotene into corn starch aerogels via supercritical carbon dioxide (sc-CO) and assessed its loading contributions through adsorption during contact time and precipitation during depressurization. The loading process was studied under two cycles at pressure of 30 MPa, temperature of 40 °C, depressurization rate of 0.

View Article and Find Full Text PDF

Wound dressings are devices used to stop bleeding and provide appropriate environmental conditions to accelerate wound healing. The effectiveness of wound dressing materials can be crucial to prevent deaths from excessive bleeding in surgeries and promote complete restoration of the injury. Some requirements for an ideal wound dressing are rapid hemostatic effect, high swelling capacity, antibacterial properties, biocompatibility, biodegradability, and mechanical strength.

View Article and Find Full Text PDF

Hyaluronic acid (HA) has already been consolidated in the literature as an extremely efficient biopolymer for biomedical applications. In addition to its biodegradability, HA also has excellent biological properties. In the nanofiber form, this polymer can mimic biological tissues, mainly the layers of the skin, and therefore has great potential as structures for the construction of wound dressings.

View Article and Find Full Text PDF

Electrospinning is a versatile and low-cost technique widely used in the manufacture of nanofibrous polymeric membranes applied in different areas, especially in bioengineering. Hyaluronic acid (HA) is a biocompatible natural polymer, but it has rheological characteristics that make the electrospinning process difficult. Thus, its association with another polymer such as poly(vinyl alcohol) (PVA) is an alternative, as PVA has good rheological properties for electrospinning.

View Article and Find Full Text PDF

The incorporation of antimicrobials in the composites as an attempt to reduce bacterial adhesion without jeopardizing mechanical properties is a challenge for Dentistry. OBJECTIVE To evaluate the bacterial adhesion and physical properties of a composite containing the methacrylate triclosan- derivative monomer (TM). METHODOLOGY TM was synthesized and added to an experimental composite.

View Article and Find Full Text PDF

Objectives: To evaluate the antibacterial activity, bacterial viability, cytotoxicity, and mechanical/physical properties of a novel methacrylate triclosan-derivative monomer (TM) incorporated in dental resin composite.

Methods: TM was synthesized by esterification and, after characterization by FT-IR, was added to an experimental composite. Samples were divided into two groups according to TM presence, i.

View Article and Find Full Text PDF

The use of antimicrobial monomers, linked to the polymer chain of resin composites, is an interesting approach to circumvent the effects of bacteria on the dental and material surfaces. In addition, it can likely reduce the incidence of recurrent caries lesions. The aim of this study was to evaluate the effects of a novel Triclosan Methacrylate (TM) monomer, which was developed and incorporated into an experimental resin composite, on Streptococcus mutans (S.

View Article and Find Full Text PDF

Electrospinning of mucoadhesive membranes is a new and promising field of investigation in the pharmaceutical and biomedical area. The present study explored the electrospinning of two mucoadhesive polymers, chitosan and alginate, to form a core-shell type nanofibers for future applications as controlled drug delivery. Due to the charged functional groups present in these natural polysaccharides, they can complex to yield various nanodevices to be used in controlled release of several active ingredients.

View Article and Find Full Text PDF