Arachidonic acid (AA) is a polyunsaturated fatty acid that participates in the inflammatory response mainly through bioactive-lipids formation in macrophages and also in the phagocytic NADPH oxidase 2 (NOX2) activation. NOX2 is the enzyme responsible for a huge superoxide formation in macrophages, essential to eliminate pathogens inside the phagosome. The oxidase is an enzymatic complex comprised of a membrane-bound flavocytochrome b (gp91/p22), three cytosolic subunits (p47, p40 and p67) and a Rac-GTPase.
View Article and Find Full Text PDFChem Biol Interact
June 2017
Background And Aim: Oxidative stress arising from inflammatory processes is a serious cause of cell and tissue damage. Tempol is an efficient antioxidant with superoxide dismutase-like activity. The purpose of this paper is to address the inhibition of protein disulfide isomerase (PDI), an essential redox chaperone whose active sites contain the Cys-Gly-His-Cys (CXXC) motif, by the nitroxide Tempol.
View Article and Find Full Text PDFBackground: Nitroarachidonic acid (NOAA) exhibits pleiotropic anti-inflammatory actions in a variety of cell types. We have recently shown that NOAA inhibits phagocytic NADPH oxidase 2 (NOX2) by preventing the formation of the active complex. Recent work indicates the participation of protein disulfide isomerase (PDI) activity in NOX2 activation.
View Article and Find Full Text PDFNitration of arachidonic acid (AA) to nitroarachidonic acid (AANO2) leads to anti-inflammatory intracellular activities during macrophage activation. However, less is known about the capacity of AANO2 to regulate the production of reactive oxygen species under proinflammatory conditions. One of the immediate responses upon macrophage activation involves the production of superoxide radical (O2(•-)) due to the NADPH-dependent univalent reduction of oxygen to O2(•-) by the phagocytic NADPH oxidase isoform (NOX2), the activity of NOX2 being the main source of O2(•-) in monocytes/macrophages.
View Article and Find Full Text PDFAntioxid Redox Signal
October 2013
Significance: Nitrated derivatives of unsaturated fatty acids (nitro-fatty acids) are being formed and detected in human plasma, cell membranes, and tissue, triggering signaling cascades via covalent and reversible post-translational modifications of susceptible nucleophilic amino acids in transcriptional regulatory proteins and enzymes.
Recent Advances: Nitro-fatty acids modulate metabolic as well as inflammatory signaling pathways, including the p65 subunit of nuclear factor κB and the transcription factor peroxisome proliferator-activated receptor-γ. Moreover, nitro-fatty acids can activate heat shock as well as phase II antioxidant responses.