The increasing exposure to nanoplastics (NPs) raises significant concerns for human health, primarily due to their potential bioaccumulative properties. While NPs have recently been detected in human blood, their interactions with specific immune cell subtypes and their impact on immune regulation remain unclear. In this proof-of-concept study, model palladium-doped polystyrene NPs (PS-Pd NPs) are utilized to enable single-cell mass cytometry (CyTOF) detection.
View Article and Find Full Text PDFGraphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.
View Article and Find Full Text PDFIn recent years, the use of MXenes, a class of two-dimensional materials composed of transition metal carbides, nitrides, or carbonitrides, has shown significant promise in the field of skin wound healing. This review explores the multifunctional properties of MXenes, focusing on their electrical conductivity, photothermal effects, and biocompatibility in this field. MXenes have been utilized to develop advanced wound healing devices such as hydrogels, patches, and smart bandages for healing examination.
View Article and Find Full Text PDFIntroduction: In the process of bone regeneration, a prominent role is played by macrophages involved in both the initial inflammation and the regeneration/vascularization phases, due to their M2 anti-inflammatory phenotype. Together with osteoclasts, they participate in the degradation of the bone matrix if the inflammatory process does not end. In this complex scenario, recently, much attention has been paid to extracellular communication mediated by nanometer-sized vesicles, with high information content, called exosomes (EVs).
View Article and Find Full Text PDFExposure to altered gravity influences cellular behaviour in cell cultures. Hydrogels are amongst the most common materials used to produce tissue-engineering scaffolds, and their mechanical properties play a crucial role in cell-matrix interaction. However, little is known about the influence of altered gravity on hydrogel properties.
View Article and Find Full Text PDFThe appeal of carbon dots (CDs) has grown recently, due to their established biocompatibility, adjustable photoluminescence properties, and excellent water solubility. For the first time in the literature, copper chlorophyllin-based carbon dots (Chl-D CDs) are successfully synthesized. Chl-D CDs exhibit unique spectroscopic traits and are found to induce a Fenton-like reaction, augmenting photodynamic therapy (PDT) efficacies via ferroptotic and apoptotic pathways.
View Article and Find Full Text PDFThanks to its intrinsic properties, two-dimensional (2D) bismuth (bismuthene) can serve as a multimodal nanotherapeutic agent for lung cancer acting through multiple mechanisms, including photothermal therapy (PTT), magnetic field-induced hyperthermia (MH), immunogenic cell death (ICD), and ferroptosis. To investigate this possibility, we synthesized bismuthene from the exfoliation of 3D layered bismuth, prepared through a facile method that we developed involving surfactant-assisted chemical reduction, with a specific focus on improving its magnetic properties. The bismuthene nanosheets showed high and anti-cancer activity after simultaneous light and magnetic field exposure in lung adenocarcinoma cells.
View Article and Find Full Text PDFNanoparticles (NPs) elicit sterile inflammation, but the underlying signaling pathways are poorly understood. Here, we report that human monocytes are particularly vulnerable to amorphous silica NPs, as evidenced by single-cell-based analysis of peripheral blood mononuclear cells using cytometry by time-of-flight (CyToF), while silane modification of the NPs mitigated their toxicity. Using human THP-1 cells as a model, we observed cellular internalization of silica NPs by nanoscale secondary ion mass spectrometry (nanoSIMS) and this was confirmed by transmission electron microscopy.
View Article and Find Full Text PDFAlthough vanadium-based metallodrugs are recently explored for their effective anti-inflammatory activity, they frequently cause undesired side effects. Among 2D nanomaterials, transition metal carbides (MXenes) have received substantial attention for their promise as biomedical platforms. It is hypothesized that vanadium immune properties can be extended to MXene compounds.
View Article and Find Full Text PDFMXene QDs (MQDs) have been effectively used in several fields of biomedical research. Considering the role of hyperactivation of immune system in infectious diseases, especially in COVID-19, MQDs stand as a potential candidate as a nanotherapeutic against viral infections. However, the efficacy of MQDs against SARS-CoV-2 infection has not been tested yet.
View Article and Find Full Text PDFThere is a critical unmet need to detect and image 2D materials within single cells and tissues while surveying a high degree of information from single cells. Here, a versatile multiplexed label-free single-cell detection strategy is proposed based on single-cell mass cytometry by time-of-flight (CyTOF) and ion-beam imaging by time-of-flight (MIBI-TOF). This strategy, "Label-free sINgle-cell tracKing of 2D matErials by mass cytometry and MIBI-TOF Design" (LINKED), enables nanomaterial detection and simultaneous measurement of multiple cell and tissue features.
View Article and Find Full Text PDFGiven the wide variety of potential applications of graphene oxide (GO), its consequent release into the environment poses serious concerns on its safety. The future production and exploitation of graphene in the years to come should be guided by its specific chemical-physical characteristics. The unparalleled potential of single-cell mass cytometry (CyTOF) to dissect by high-dimensionality the specific immunological effects of nanomaterials, represents a turning point in nanotoxicology.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) have a massive impact on human health. Due to the limited regeneration capacity of adult heart tissue, CVDs are the leading cause of death and disability worldwide. Even though there are surgical and pharmacological treatments for CVDs, regenerative strategies are the most promising approaches and have the potential to benefit millions of people.
View Article and Find Full Text PDFWe recently found by single-cell mass cytometry that human B cells internalize graphene oxide (GO). The functional impact of such uptake on B cells remains unexplored. Here, we disclosed the effects of GO and amino-functionalized GO (GONH) interacting with human B cells and at the protein and gene expression levels.
View Article and Find Full Text PDFNanotechnology can offer a number of options against coronavirus disease 2019 (COVID-19) acting both extracellularly and intracellularly to the host cells. Here, the aim is to explore graphene oxide (GO), the most studied 2D nanomaterial in biomedical applications, as a nanoscale platform for interaction with SARS-CoV-2. Molecular docking analyses of GO sheets on interaction with three different structures: SARS-CoV-2 viral spike (open state - 6VYB or closed state - 6VXX), ACE2 (1R42), and the ACE2-bound spike complex (6M0J) are performed.
View Article and Find Full Text PDFTwo-dimensional transition metal carbides/carbonitrides known as MXenes are rapidly growing as multimodal nanoplatforms in biomedicine. Here, taking SARS-CoV-2 as a model, we explored the antiviral properties and immune-profile of a large panel of four highly stable and well-characterized MXenes - TiCT, TaCT , MoTiCT and NbCT . To start with antiviral assessment, we first selected and deeply analyzed four different SARS-CoV-2 genotypes, common in most countries and carrying the wild type or mutated spike protein.
View Article and Find Full Text PDFCarbon enriched bioceramic (C-Bio) scaffolds have recently shown exceptional results in terms of their biological and mechanical properties. The present study aims at assessing the ability of the C-Bio scaffolds to affect the commitment of canine adipose-derived mesenchymal stem cells (cAD-MSCs) and investigating the influence of carbon on cell proliferation and osteogenic differentiation of cAD-MSCs in vitro. The commitment of cAD-MSCs to an osteoblastic phenotype has been evaluated by expression of several osteogenic markers using real-time PCR.
View Article and Find Full Text PDFEnvironmental pollution is a major cause of global mortality and burden of disease. All chemical pollution forms together may be responsible for up to 12 million annual excess deaths as estimated by the Lancet Commission on pollution and health as well as the World Health Organization. Ambient air pollution by particulate matter (PM) and ozone was found to be associated with an all-cause mortality rate of up to 9 million in the year 2015, with the majority being of cerebro- and cardiovascular nature (e.
View Article and Find Full Text PDFWe realize an ultracompact nanocytometer for real-time impedimetric detection and classification of subpopulations of living cells. Nanoscopic nanowires in a microfluidic channel act as nanocapacitors and measure in real time the change of the amplitude and phase of the output voltage and, thus, the electrical properties of living cells. We perform the cell classification in the human peripheral blood (PBMC) and demonstrate for the first time the possibility to discriminate monocytes and of lymphocytes in a label-free format.
View Article and Find Full Text PDFProlonged exposure to microgravity (MG) during long-duration space flights is known to induce severe dysregulation of osteoblast functions connected to a significant bone loss, similar to the condition induced by osteoporosis. Hence, we here present MG as a promising model to challenge the effectiveness of new scaffolds designed for bone regeneration in counteracting bone loss. To this end, we carried out an integrative study aimed to evaluate, in the extreme condition of Random Positioning Machine-simulated MG, the osteoinductive potential of nanocrystalline magnesium-doped hydroxyapatite/type I collagen composite scaffold (MHA/Coll), that we previously demonstrated to be an excellent tool for bone tissue engineering.
View Article and Find Full Text PDFAs an emerging member of the graphene family, structurally defined graphene nanoribbons (GNRs) have shown promising applications in various fields. The evaluation of the degradability of GNRs is particularly important for assessing the persistence level and risk of these materials in living organisms and the environment. However, there is a void in the study of the degradation of GNRs.
View Article and Find Full Text PDFThe COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics.
View Article and Find Full Text PDFBackground: An immune active cancer phenotype typified by a T helper 1 (Th-1) immune response has been associated with increased responsiveness to immunotherapy and favorable prognosis in some but not all cancer types. The reason of this differential prognostic connotation remains unknown.
Methods: To explore the contextual prognostic value of cancer immune phenotypes, we applied a multimodal pan-cancer analysis among 31 different histologies (9282 patients), encompassing immune and oncogenic transcriptomic analysis, mutational and neoantigen load and copy number variations.