The transglycosylation activity of a novel commercial β-galactosidase from (Saphera) was evaluated. The optimal conditions for the operation of this enzyme, measured with -nitrophenyl-β-d-galactopyranoside, were 40 °C and pH around 6.0.
View Article and Find Full Text PDFA sustainable and scalable process for the production of a new mixture of fructooligosaccharides (FOS) was developed using a continuous-flow approach based on an immobilized whole cells-packed bed reactor. The technological transfer from a classical batch system to an innovative flow environment allowed a significant improvement of the productivity. Moreover, the stability of this production system was ascertained by up to 7 days of continuous working.
View Article and Find Full Text PDFObjective: A simple and inexpensive methodology, based on the use of micro-centrifuge filter tubes, is proposed for establishing the best enzyme immobilization conditions.
Results: The immobilized biocatalyst is located inside the filter holder during the whole protocol, thus facilitating the incubations, filtrations and washings. This procedure minimizes the amount of enzyme and solid carrier needed, and allows exploring different immobilization parameters (pH, buffer concentration, enzyme/carrier ratio, incubation time, etc.
The β-fructofuranosidase Xd-INV from the yeast Xanthophyllomyces dendrorhous is the largest microbial enzyme producing neo-fructooligosaccharides (neo-FOS) known to date. It mainly synthesizes neokestose and neonystose, oligosaccharides with potentially improved prebiotic properties. The Xd-INV gene comprises an open reading frame of 1995 bp, which encodes a 665-amino acid protein.
View Article and Find Full Text PDFThe formation of galactooligosaccharides (GOS) in skim milk during treatment with several commercial β-galactosidases (Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae) was analysed in detail, at 4 and 40°C. The maximum GOS concentration was obtained at a lactose conversion of approximately 40-50% with B. circulans and A.
View Article and Find Full Text PDFThe synthesis of galactooligosaccharides (GOS) catalyzed by β-galactosidase from Aspergillus oryzae (Enzeco) was studied. Using 400 g/L of lactose and 15 U/mL, maximum GOS yield, measured by HPAEC-PAD, was 26.8% w/w of total carbohydrates, obtained at approximately 70% lactose conversion.
View Article and Find Full Text PDFBackground: A complete saccharification of plant polymers is the critical step in the efficient production of bio-alcohols. Beta-glucosidases acting in the degradation of intermediate gluco-oligosaccharides produced by cellulases limit the yield of the final product.
Results: In the present work, we have identified and then successfully cloned, expressed, purified and characterised 4 highly active beta-glucosidases from fibre-adherent microbial community from the cow rumen.
The transgalactosylation activity of Kluyveromyces lactis cells was studied in detail. Cells were permeabilized with ethanol and further lyophilized to facilitate the transit of substrates and products. The resulting biocatalyst was assayed for the synthesis of galacto-oligosaccharides (GOS) and compared with two soluble β-galactosidases from K.
View Article and Find Full Text PDFMicrobial enzymes have many known applications as biocatalysts. However, only a few of them are currently employed for biocatalysis even though an annotated collection of more than 190 billion bases is available in metagenome sequence databases from uncultured and highly diverse microbial populations. This review aims at providing conceptual and technical bases for the translation of metagenome data into both experimental and computational frameworks that facilitates a comprehensive analysis of the biocatalysts diversity space.
View Article and Find Full Text PDFAn extracellular beta-fructofuranosidase from the yeast Rhodotorula dairenensis was characterized biochemically. The enzyme molecular mass was estimated to be 680 kDa by analytical gel filtration and 172 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, of which the N-linked carbohydrate accounts for 16% of the total mass. It displays optimum activity at pH 5 and 55-60 degrees C.
View Article and Find Full Text PDFAn extracellular beta-fructofuranosidase from the yeast Xanthophyllomyces dendrorhous was characterized biochemically, molecularly, and phylogenetically. This enzyme is a glycoprotein with an estimated molecular mass of 160 kDa, of which the N-linked carbohydrate accounts for 60% of the total mass. It displays optimum activity at pH 5.
View Article and Find Full Text PDFbeta-Fructofuranosidases are powerful tools in industrial biotechnology. We have characterized an extracellular beta-fructofuranosidase from the yeast Schwanniomyces occidentalis. The enzyme shows broad substrate specificity, hydrolyzing sucrose, 1-kestose, nystose and raffinose, with different catalytic efficiencies (k(cat)/K(m)).
View Article and Find Full Text PDFA novel enzyme, RA.04, belonging to the alpha-amylase family was obtained after expression of metagenomic DNA from rumen fluid (Ferrer et al.: Environ.
View Article and Find Full Text PDFA fructosyltransferase present in Pectinex Ultra SP-L, a commercial enzyme preparation from Aspergillus aculeatus, was purified to 107-fold and further characterised. The enzyme was a dimeric glycoprotein (20% (w/w) carbohydrate content) with a molecular mass of around 135 kDa for the dimer. Optimal activity/stability was found in the pH range 5.
View Article and Find Full Text PDFSugar syrup and molasses from beet processing containing 620 and 570 mg/mL sucrose, respectively, were assayed as low-cost and available substrates for the enzymatic synthesis of fructo-oligosaccharides (FOSs). A commercial pectinase (Pectinex Ultra SP-L, from Aspergillus aculeatus) characterized by the presence of a transfructosylating activity was used as a biocatalyst. The FOS production increased when lowering the initial pH value of syrup (7.
View Article and Find Full Text PDF