Endocrine disrupting compounds (EDCs), including both natural estrogens and estrogenic chemicals, are almost ubiquitous in the aquatic environment. In the marine bivalve Mytilus galloprovincialis different estrogenic compounds, both individually and in mixtures, were shown to affect the immune function both in vitro and in vivo. Moreover, individual estrogens, the natural estrogen 17beta-estradiol (E(2)) and the xenoestrogen bisphenol A (BPA), have been recently demonstrated to alter functional parameters and gene expression in mussel digestive gland, a tissue that plays a central role in metabolism and in nutrient distribution to the gonad during gamete maturation, with possible consequences on gametogenesis.
View Article and Find Full Text PDFIn bivalve molluscs the digestive gland (hepatopancreas) plays a central role in metabolism. In this work, the effects of 17beta-estradiol (E(2)) on digestive gland were evaluated in Mytilus galloprovincialis. Mussels were injected into the adductor muscle sinus with different amounts of the hormone (5, 25 and 100pmol) and tissues were sampled 24h post-injection.
View Article and Find Full Text PDFPharmaceuticals and Personal Care Products (PPCPs) are a class of emerging environmental pollutants with the potential of affecting various aquatic organisms through unexpected modes of action. Triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) (TCS), is a common antibacterial agent that is found in significant amounts in the aquatic environment. In this work, the possible effects and modes of action of TCS were investigated in the marine bivalve Mytilus galloprovincialis Lam.
View Article and Find Full Text PDFEndocrine disrupting compounds (EDCs) are almost ubiquitous in the aquatic environment. In the marine bivalve Mytilus the natural estrogen 17beta-estradiol (E2) and different EDCs have been recently demonstrated to affect the function of the immune cells, the hemocytes. The effects were Tamoxifen-sensitive and were mediated by rapid modulation of kinase-mediated transduction pathways.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2006
In mammals, estrogens have dose- and cell-type-specific effects on immune cells and may act as pro- and anti-inflammatory stimuli, depending on the setting. In the bivalve mollusc Mytilus, the natural estrogen 17beta-estradiol (E(2)) has been shown to affect neuroimmune functions. We have investigated the immunomodulatory role of E(2) in Mytilus hemocytes, the cells responsible for the innate immune response.
View Article and Find Full Text PDFBrominated flame retardants (BFRs) are a large group of compounds added to or applied as a treatment to polymeric materials to prevent fires. Tetrabisphenol A (TBBPA) is the most important individual BFR used in industry. Although TBBPA and its derivatives can be found in environmental samples, data are very limited on the presence of this compound in biota.
View Article and Find Full Text PDFMarine bivalves accumulate large amounts of bacteria from the environment (mainly Vibrionaceae and coliforms). Although persistence of different bacteria in bivalve tissues largely depends on their sensitivity to the bactericidal activity of circulating haemocytes and haemolymph soluble factors, the mechanisms involved in bacteria-host cell interactions in these invertebrates are largely unknown. In the mussel Mytilus, differences in interactions between haemocytes and different Escherichia coli and Vibrio cholerae strains [E.
View Article and Find Full Text PDFEndocrine disrupting chemicals (EDCs) include a variety of natural and synthetic estrogens, as well as estrogen-mimicking chemicals. We have previously shown that in the hemocytes of the mussel Mytilus galloprovincialis Lam. both natural and environmental estrogens in vitro can rapidly affect the phosphorylation state of components of tyrosine kinase-mediated cell signalling, in particular of mitogen activated protein kinases (MAPKs) and signal transducers and activators of transcription (STAT), that are involved in mediating the hemocyte immune response.
View Article and Find Full Text PDFEstrogens and estrogenic chemicals can affect several vertebrate non-reproductive functions, the immune response in particular. We have previously shown that in the hemocytes of the marine mollusc Mytilus the natural estrogen 17beta-estradiol (E(2)) can affect the immune function through rapid tyrosine kinase-mediated signalling pathways converging on phosphorylation of both mitogen activated protein kinases (MAPKs) and signal transducers and activators of transcription (STATs), whose activation plays a key role in the immune response. In this work the effects of synthetic estrogens (such as DES), estrogenic chemicals (such as Bisphenol A, Nonylphenol), and plant estrogens (genistein) on mussel hemocytes were evaluated.
View Article and Find Full Text PDFEstrogens affect the functioning of several non-reproductive tissues, the immune system in particular. In mammalian immunocytes, 17beta-estradiol (E2) has both dose- and cell-type specific effects and the responses to E2 seem to be mediated by rapid, non-genomic mechanisms; these may be initiated at either membrane or cytosolic locations, and can result in both direct local effects, such as modification of ion fluxes, and regulation of gene transcription secondary to activation of different kinase cascades, including mitogen activated protein kinases (MAPKs). In this work, the short-term effects of E(2) and the possible mechanisms of estrogen-mediated cell signaling were investigated in the hemocytes, the immune cells of the bivalve mollusc, the mussel Mytilus galloprovincialis Lam.
View Article and Find Full Text PDF