Publications by authors named "Lucia Cavelier"

Aims And Background: Whole-genome sequencing (WGS) is increasingly applied in clinical practice and expected to replace standard-of-care (SoC) genetic diagnostics in hematological malignancies. This study aims to assess and compare the fully burdened cost ('micro-costing') per patient for Swedish laboratories using WGS and SoC, respectively, in pediatric and adult patients with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML).

Methods: The resource use and cost details associated with SoC, chromosome banding analysis, fluorescent hybridization, and targeted sequencing analysis, were collected activity-based costing methods from four diagnostic laboratories.

View Article and Find Full Text PDF

Gene panel sequencing has become a common diagnostic tool for detecting somatically acquired mutations in myeloid neoplasms. However, many panels have restricted content, provide insufficient sensitivity levels, or lack clinically validated workflows. We here describe the development and validation of the Genomic Medicine Sweden myeloid gene panel (GMS-MGP), a capture-based 191 gene panel including mandatory genes in contemporary guidelines as well as emerging candidates.

View Article and Find Full Text PDF
Article Synopsis
  • - Current cancer precision medicine relies heavily on analyzing various genomic changes, with next-generation sequencing (NGS) becoming the primary method for diagnostics in recent years as it offers a comprehensive view of tumors.
  • - This shift towards NGS is driven by a need to evaluate more complex biomarkers and genomic variations that influence treatment outcomes, alongside the rapid decrease in sequencing costs and the advent of new targeted therapies.
  • - The review emphasizes the historical context of these methods, their clinical relevance in both pediatric and adult cancers, and discusses challenges in implementing them, while also stressing the importance of monitoring treatment response and exploring future advancements in sequencing technology.
View Article and Find Full Text PDF

Purpose: Clinical relapse is the major threat for patients with myelodysplastic syndrome (MDS) undergoing hematopoietic stem-cell transplantation (HSCT). Early detection of measurable residual disease (MRD) would enable preemptive treatment and potentially reduced relapse risk.

Methods: Patients with MDS planned for HSCT were enrolled in a prospective, observational study evaluating the association between MRD and clinical outcome.

View Article and Find Full Text PDF

Introduction: The suitability of whole-genome sequencing (WGS) as the sole method to detect clinically relevant genomic aberrations in B-cell acute lymphoblastic leukemia (ALL) was investigated with the aim of replacing current diagnostic methods.

Methods: For this purpose, we assessed the analytical performance of 150 bp paired-end WGS (90x leukemia/30x germline). A set of 88 retrospective B-cell ALL samples were selected to represent established ALL subgroups as well as ALL lacking stratifying markers by standard-of-care (SoC), so-called B-other ALL.

View Article and Find Full Text PDF

Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e.

View Article and Find Full Text PDF

The rapidly increasing availability of sequence information for tumor patients, combined with expanding treatment options, motivates efforts to monitor the course of disease for individual patients by analyzing patient-specific mutations in liquid biopsies, as highly specific markers of the malignancy. We discuss the suitability of established molecular methods to monitor patients with malignancies, in particular leukemias, comparing these to the recently developed super rolling circle amplification technique for highly sensitive, parallel measurements of mutant sequences using readily available instruments. The very high sensitivity for tumor-specific mutations-in combination with low cost and ready access at clinics-promises to allow routine monitoring of increasing numbers of tumor patients, in order to initiate improved treatments at the earliest timepoint possible, when necessary.

View Article and Find Full Text PDF

Purpose: In acute myeloid leukemia (AML), somatic mutations (commonly missense, nonsense, and frameshift indels) in RUNX1 are associated with a dismal clinical outcome. Inherited RUNX1 mutations cause familial platelet disorder. As approximately 5%-10% of germline RUNX1 mutations are large exonic deletions, we hypothesized that such exonic RUNX1 aberrations may also be acquired during the development of AML.

View Article and Find Full Text PDF

Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens.

View Article and Find Full Text PDF

Despite improvement of current treatment strategies and novel targeted drugs, relapse and treatment resistance largely determine the outcome for acute myeloid leukemia (AML) patients. To identify the underlying molecular characteristics, numerous studies have been aimed to decipher the genomic- and transcriptomic landscape of AML. Nevertheless, further molecular changes allowing malignant cells to escape treatment remain to be elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • The clinical significance of small clones in chronic lymphocytic leukemia (CLL) detected by next generation sequencing (NGS) is debated, with guidelines typically recommending focus on variants with a variant allele frequency (VAF) of 10% or higher.
  • In a study of 325 CLL patients, 47 pathogenic variants were identified, with 11 (23%) falling within the 5% to 10% VAF range, all confirmed by additional NGS testing, Sanger sequencing, and digital droplet PCR.
  • The findings suggest that NGS can reliably identify variants with lower VAFs, proposing a new diagnostic approach that enables clinical reporting of variants down to 5%, emphasizing the need for standardized NGS methodologies across
View Article and Find Full Text PDF

Objective: The aim of this project was to implement long-read sequencing for BCR-ABL1 TKI resistance mutation screening in a clinical setting for patients undergoing treatment for chronic myeloid leukemia.

Materials And Methods: Processes were established for registering and transferring samples from the clinic to an academic sequencing facility for long-read sequencing. An automated analysis pipeline for detecting mutations was established, and an information system was implemented comprising features for data management, analysis and visualization.

View Article and Find Full Text PDF

Rare tumor-specific mutations in patient samples serve as excellent markers to monitor the course of malignant disease and responses to therapy in clinical routine, and improved assay techniques are needed for broad adoption. We describe herein a highly sensitive and selective molecule amplification technology - superRCA assays - for rapid and highly specific detection of DNA sequence variants present at very low frequencies in DNA samples. Using a standard flow cytometer we demonstrate precise, ultra-sensitive detection of single-nucleotide mutant sequences from malignant cells against up to a 100,000-fold excess of DNA from normal cells in either bone marrow or peripheral blood, to follow the course of patients treated for acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Monoclonal rearrangements of immunoglobulin (Ig) genes and T-cell receptor (TCR) genes are used for minimal measurable disease in acute lymphoblastic leukemia (ALL). The golden standard for screening of gene rearrangements in ALL has been PCR GeneScan and Sanger sequencing, which are laborsome and time-consuming methods. More rapid next-generation sequencing methods, such as LymphoTrack could possibly replace PCR GeneScan and Sanger sequencing for clonality assessment.

View Article and Find Full Text PDF

Precision medicine is revolutionising patient care in cancer. As more knowledge is gained about the impact of specific genetic lesions on diagnosis, prognosis and treatment response, diagnostic precision and the possibility for optimal individual treatment choice have improved. Identification of hallmark genetic aberrations such as the BCR::ABL1 gene fusion in chronic myeloid leukaemia (CML) led to the rapid development of efficient targeted therapy and molecular follow-up, vastly improving survival for patients with CML during recent decades.

View Article and Find Full Text PDF

Germline pathogenic variants in are associated with familial platelet disorder with predisposition to myeloid malignancies (FPD/MM) with intragenic deletions in accounting for almost 7% of all reported variants. We present two new pedigrees with FPD/MM carrying two different germline intragenic deletions. The aforementioned deletions encompass exons 1-2 and 9-10 respectively, with the exon 9-10 deletion being previously unreported.

View Article and Find Full Text PDF

Background: Whole-genome sequencing (WGS) and whole-transcriptome sequencing (WTS), with the ability to provide comprehensive genomic information, have become the focal point of research interest as novel techniques that can support precision diagnostics in routine clinical care of patients with various cancer types, including hematological malignancies. This national multi-center study, led by Genomic Medicine Sweden, aims to evaluate whether combined application of WGS and WTS (WGTS) is technically feasible and can be implemented as an efficient diagnostic tool in patients with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). In addition to clinical impact assessment, a health-economic evaluation of such strategy will be performed.

View Article and Find Full Text PDF

Clonal haematopoiesis of indeterminate potential (CHIP) may predispose for the development of therapy-related myeloid neoplasms (t-MN). Using target next-generation sequencing (t-NGS) panels and digital droplet polymerase chain reactions (ddPCR), we studied the myeloid gene mutation profiles of patients with chronic lymphocytic leukaemia (CLL) who developed a t-MN after treatment with chemo-(immuno)therapy. Using NGS, we detected a total of 30 pathogenic/likely pathogenic (P/LP) variants in 10 of 13 patients with a t-MN (77%, median number of variants for patient: 2, range 0-6).

View Article and Find Full Text PDF

Numerous studies have been performed over the last decade to exploit the complexity of genomic and transcriptomic lesions driving the initiation of acute myeloid leukemia (AML). These studies have helped improve risk classification and treatment options. Detailed molecular characterization of longitudinal AML samples is sparse, however; meanwhile, relapse and therapy resistance represent the main challenges in AML care.

View Article and Find Full Text PDF

Over the last decades, rapid technological and scientific advances have led to a merge of molecular sciences and clinical medicine, resulting in a better understanding of disease mechanisms and the development of novel therapies that exploit specific molecular lesions or profiles driving disease. Precision oncology is here used as an example, illustrating the potential of precision/personalized medicine that also holds great promise in other medical fields. Real-world implementation can only be achieved by dedicated healthcare connected centers which amass and build up interdisciplinary expertise reflecting the complexity of precision medicine.

View Article and Find Full Text PDF

Precision diagnostics and therapy have been implemented rather early in clinical hematology due to the easy accessibility of blood and bone marrow, allowing not only for consecutive genetic analysis at diagnosis, remission and relapse, but also for culturing these cells and testing new drugs in vitro. One contributing factor has also been the relatively low number of »driver« mutations in hematologic malignancies and that some of them are gain of function mutations that are relatively easy to target by drugs. Examples of this development are ABL1-, JAK2-, and FLT3-inhibitors for the treatment of chronic myeloid leukemia, myeloproliferative neoplasms, and acute myeloid leukemia, respectively.

View Article and Find Full Text PDF