Carbendazim derivatives, commonly used as antiparasitic drugs, have shown potential as anticancer agents due to their ability to induce cell cycle arrest and apoptosis in human cancer cells by inhibiting tubulin polymerization. Crystallographic structures of α/β-tubulin multimers complexed with nocodazole and mebendazole, two carbendazim derivatives with potent anticancer activity, highlighted the possibility of designing compounds that occupy both benzimidazole- and colchicine-binding sites. In addition, previous studies have demonstrated that the incorporation of a phenoxy group at position 5/6 of carbendazim increases the antiproliferative activity in cancer cell lines.
View Article and Find Full Text PDFHuman African Trypanosomiasis (HAT), a disease that provokes 2184 new cases a year in Sub-Saharan Africa, is caused by . Current treatments are limited, highly toxic, and parasite strains resistant to them are emerging. Therefore, there is an urgency to find new drugs against HAT.
View Article and Find Full Text PDFRegulation of microtubule assembly by antimitotic agents is a potential therapeutic strategy for the treatment of cancer, parasite infections, and neurodegenerative diseases. One of these agents is nocodazole (NZ), which inhibits microtubule polymerization by binding to β-tubulin. NZ was recently co-crystallized in Gallus gallus tubulin, providing new information about the features of interaction for ligand recognition and stability.
View Article and Find Full Text PDFMicrotubules are highly dynamic assemblies of α/β-tubulin heterodimers whose polymerization inhibition is among one of the most successful approaches for anticancer drug development. Overexpression of the class I (βI) and class III (βIII) β-tubulin isotypes in breast and lung cancers and the highly expressed class VI (βVI) β-tubulin isotype in normal blood cells have increased the interest for designing specific tubulin-binding anticancer therapies. To this end, we employed our previously proposed model of the β-tubulin-nocodazole complex, supported by the recently determined X-ray structure, to identify the fundamental structural differences between β-tubulin isotypes.
View Article and Find Full Text PDF