Publications by authors named "Lucia Cabal-Hierro"

Hip fractures (HFx) are associated with a higher morbidity and mortality rates, leading to a significant reduction in life quality and in limitation of patient´s mobility. The present study aimed to obtain real-world evidence on the clinical characteristics of patients with an initial and a second hip fracture (HFx) and develop a predictive model for second HFx using artificial intelligence. Electronic health records from one hospital centre in Spain from January 2011 to December 2019 were analysed using EHRead® technology, based on natural language processing and machine learning.

View Article and Find Full Text PDF

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive leukemia of plasmacytoid dendritic cells (pDC). BPDCN occurs at least three times more frequently in men than in women, but the reasons for this sex bias are unknown. Here, studying genomics of primary BPDCN and modeling disease-associated mutations, we link acquired alterations in RNA splicing to abnormal pDC development and inflammatory response through Toll-like receptors.

View Article and Find Full Text PDF

Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell's intracellular degradation machinery, while sparing non-mutated JAK2.

View Article and Find Full Text PDF

Chromatin organization is a highly orchestrated process that influences gene expression, in part by modulating access of regulatory factors to DNA and nucleosomes. Here, we report that the chromatin accessibility regulator HMGN1, a target of recurrent DNA copy gains in leukemia, controls myeloid differentiation. HMGN1 amplification is associated with increased accessibility, expression, and histone H3K27 acetylation of loci important for hematopoietic stem cells (HSCs) and leukemia, such as HoxA cluster genes.

View Article and Find Full Text PDF
Article Synopsis
  • Down syndrome (DS) is linked to developmental issues and a higher risk of leukemia, which the study investigates using RNA and chromatin sequencing in DS models.
  • The research found that the protein HMGN1, which is overexpressed due to trisomy 21, plays a key role in modifying gene expression and is essential for normal B cell function.
  • Additionally, increased levels of histone H3K27 acetylation were noted, indicating that HMGN1 drives transcriptional changes that may relate to B cell development and leukemia, suggesting a need for further exploration of HMGN1 in DS.
View Article and Find Full Text PDF

Elucidation of TNF-directed mechanisms for cell death induction and maintenance of tumor growth has revealed a role for receptor-interacting protein kinases 1 and 3 (RIPK1/RIP1 and RIPK3/RIP3), components of the necrosome complex, as determinants of cell fate. Here, the participation of TNF signaling was analyzed with regard to the cytotoxic action of different DNA-damaging agents in a panel of colon cancer cells. While most of these cell lines were insensitive to TNF, combination with these drugs increased sensitivity by inducing cell death and DNA damage, especially in the case of the topoisomerase inhibitor SN38.

View Article and Find Full Text PDF

Unlabelled: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive hematologic malignancy with dismal outcomes for which no standard therapy exists. We found that primary BPDCN cells were dependent on the antiapoptotic protein BCL2 and were uniformly sensitive to the BCL2 inhibitor venetoclax, as measured by direct cytotoxicity, apoptosis assays, and dynamic BH3 profiling. Animals bearing BPDCN patient-derived xenografts had disease responses and improved survival after venetoclax treatment in vivo Finally, we report on 2 patients with relapsed/refractory BPDCN who received venetoclax off-label and experienced significant disease responses.

View Article and Find Full Text PDF

Purpose: We showed previously that in HT29 colon cancer cells, modulation of hypoxia-induced stress signaling affects oxaliplatin cytotoxicity. To further study the significance of hypoxia-induced signaling through JNK, we set out to investigate how modulation of kinase activities influences cellular responses of hypoxic colon cancer cells to cytotoxic drugs.

Experimental Design: In a panel of cell lines, we investigated effects of pharmacologic and molecular inhibition of JNK on sensitivity to oxaliplatin, SN-38, and 5-FU.

View Article and Find Full Text PDF

Tumor Necrosis Factor Receptor 2 (TNFR2) activates transcription factor κB (NF-κB) and c-Jun N-terminal kinase (JNK). Most of the biological activities triggered by TNFR2 depend on the recruitment of TNF Receptor-Associated Factor 2 (TRAF2) to the intracellular region of the receptor. The intracellular region of TNFR2 contains five highly conserved amino acid sequences, three of which appear implicated in receptor signaling.

View Article and Find Full Text PDF

Tumor Necrosis Factor (TNF) interacts with two receptors known as TNFR1 and TNFR2. TNFR1 activation may result in either cell proliferation or cell death. TNFR2 activates Nuclear Factor-kappaB (NF-kB) and c-Jun N-terminal kinase (JNK) which lead to transcriptional activation of genes related to cell proliferation and survival.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF) is a key mediator in the inflammatory response which is implicated in the onset of a number of diseases. Research on TNF led to the characterization of the largest family of cytokines known until now, the TNF superfamily, which exert their biological effects through the interaction with transmembrane receptors of the TNFR superfamily. TNF itself exerts its biological effects interacting with two different receptors: TNFR1 and TNFR2.

View Article and Find Full Text PDF

Tumor necrosis factor receptor 2 (TNFR2) activates transcription factor κB (NF-κB) and c-Jun N-terminal kinase (JNK). The mechanisms mediating these activations are dependent on the recruitment of TNF receptor-associated factor 2 (TRAF2) to the intracellular region of the receptor. TNFR2 also induces TRAF2 degradation.

View Article and Find Full Text PDF

Microtubule interfering agents (MIAs) are antitumor drugs that inhibit microtubule dynamics, while kinesin spindle protein (KSP) inhibitors are substances that block the formation of the bipolar spindle during mitosis. All these compounds cause the accumulation of mitotic cells and subsequently cell death. We used two-dimensional gel electrophoresis (2DE) followed by MALDI-MS analysis to demonstrate that the MIAs vinblastine (Velban) and paclitaxel (Taxol), as well as the KSP inhibitor S-tritil-L-cysteine, induce the phosphorylation of annexin A2 in human lung carcinoma A549 cells.

View Article and Find Full Text PDF

Microtubule interfering agents (MIAs) are anti-tumor drugs that inhibit microtubule dynamics, while kinesin spindle protein (KSP) inhibitors are substances that block the formation of the bipolar spindle during mitosis. All these compounds cause G2/M arrest and cell death. Using 2D-PAGE followed by Nano-LC-ESI-Q-ToF analysis, we found that MIAs such as vincristine (Oncovin) or paclitaxel (Taxol) and KSP inhibitors such as S-tritil-l-cysteine induce the phosphorylation of the nuclear protein p54(nrb) in HeLa cells.

View Article and Find Full Text PDF

Paclitaxel (Ptx) is an antitumoural drug that inhibits microtubule dynamics, causes G2/M arrest and induces cell death. 2-D PAGE and MALDI-TOF-MS analysis of HeLa cells extracts revealed that Ptx up-regulates a form of the eukaryotic elongation factor 1Bgamma (eEF1Bgamma) and down-regulates another one. This event, linked to the lack of Ptx effect over eEF1Bgamma mRNA or protein levels suggested a PTM of this elongation factor.

View Article and Find Full Text PDF