Publications by authors named "Lucia Blasco"

The combination of several therapeutic strategies is often seen as a good way to decrease resistance rates, since bacteria can more easily overcome single-drug treatments than multi-drug ones. This strategy is especially attractive when several targets and subpopulations are affected, as it is the case of persister cells, a subpopulation of bacteria able to transiently survive antibiotic exposures. This work aims to evaluate the potential of a repurposed anticancer drug, mitomycin C, combined with the lytic phage vB_KpnM-VAC13 in vitro and its safety in an in vivo murine model against two clinical isolates of this pathogen, one of them exhibiting an imipenem-persister phenotype.

View Article and Find Full Text PDF

Background: Multidrug-resistant bacteria and the shortage of new antibiotics constitute a serious health problem. This problem has led to increased interest in the use of bacteriophages, which have great potential as antimicrobial agents but also carry the risk of inducing resistance. The objective of the present study was to minimize the development of phage resistance in strains by inhibiting quorum sensing (QS) and thus demonstrate the role of QS in regulating defense mechanisms.

View Article and Find Full Text PDF

Antibiotic failure is one of the most worrisome threats to global health. Among the new therapeutic efforts that are being explored, the use of bacteriophages (viruses that kill bacteria), also known as 'phages', is being extensively studied as a strategy to target bacterial pathogens. However, one of the main drawbacks of phage therapy is the plethora of defence mechanisms that bacteria use to defend themselves against phages.

View Article and Find Full Text PDF

Background: Bacteriophage therapy is becoming part of mainstream Western medicine since antibiotics of clinical use tend to fail. It involves applying lytic bacteriophages that self-replicate and induce cell lysis, thus killing their hosts. Nevertheless, bacterial killing promotes the selection of resistant clones which sometimes may exhibit a decrease in bacterial virulence or antibiotic resistance.

View Article and Find Full Text PDF

Interest in phage therapy has increased in the last decade, and animal models have become essential in this field. The larval stage of the wax moth, Galleria mellonella, represents an easy-to-handle model. The larvae have an innate immune response and survive at 37 °C, which is ideal for infection and antimicrobial studies with bacteriophages.

View Article and Find Full Text PDF

The importance of cereals and pulses in the diet is widely recognized, and consumers are seeking for ways to balance their diet with plant-based options. However, the presence of antinutritional factors reduces their nutritional value by decreasing the bioavailability of proteins and minerals. This study's aim was to select microbes and fermentation conditions to affect the nutritional value, taste, and safety of products.

View Article and Find Full Text PDF

Mucins are important glycoproteins that form a protective layer throughout the gastrointestinal and respiratory tracts. There is scientific evidence of increase in phage-resistance in the presence of mucin for some bacterial pathogens. Manipulation in mucin composition may ultimately influence the effectiveness of phage therapy.

View Article and Find Full Text PDF

Carbapenem-resistant pathogens have been recognized as a health concern as they are both difficult to treat and detect in clinical microbiology laboratories. Researchers are making great efforts to develop highly specific, sensitive, accurate, and rapid diagnostic techniques, required to prevent the spread of these microorganisms and improve the prognosis of patients. In this context, CRISPR-Cas systems are proposed as promising tools for the development of diagnostic methods due to their high specificity; the Cas13a endonuclease can discriminate single nucleotide changes and displays collateral cleavage activity against single-stranded RNA molecules when activated.

View Article and Find Full Text PDF

Prophages are bacteriophages integrated into the bacterial host's chromosome. This research aims to analyze and characterize the existing prophages within a collection of 53 strains from intensive care units (ICUs) in Portugal and Spain. A total of 113 prophages were localized in the collection, with 18 of them being present in more than one strain simultaneously.

View Article and Find Full Text PDF

Clinical case of a patient with a multidrug-resistant prosthetic vascular graft infection which was treated with a cocktail of phages (PT07, 14/01, and PNM) in combination with ceftazidime-avibactam (CZA). After the application of the phage treatment and in absence of antimicrobial therapy, a new bloodstream infection (BSI) with a septic residual limb metastasis occurred, now involving a wild-type strain being susceptible to ß-lactams and quinolones. Clinical strains were analyzed by microbiology and whole genome sequencing techniques.

View Article and Find Full Text PDF

Phages and bacteria have acquired resistance mechanisms for protection. In this context, the aims of the present study were to analyze the proteins isolated from 21 novel lytic phages of Klebsiella pneumoniae in search of defense mechanisms against bacteria and also to determine the infective capacity of the phages. A proteomic study was also conducted to investigate the defense mechanisms of two clinical isolates of K.

View Article and Find Full Text PDF

Phage tail-like bacteriocins (PTLBs) are large proteomic structures similar to the tail phages. These structures function in bacterial competition by making pores in the membrane of their competitors. The PTLBs identified in Pseudomonas aeruginosa are known as R-type and F-type pyocins, which have a narrow spectrum of action.

View Article and Find Full Text PDF

To enable the utilization of seasonal biomasses in e.g., farm-scale biogas plants, the process should be flexible and ensure stable gas production.

View Article and Find Full Text PDF

At the end of 2019, a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused a pandemic that persists to date and has resulted in more than 6.2 million deaths. In the last couple of years, researchers have made great efforts to develop a diagnostic technique that maintains high levels of sensitivity and specificity, since an accurate and early diagnosis is required to minimize the prevalence of SARS-CoV-2 infection.

View Article and Find Full Text PDF

Since their discovery, toxin-antitoxin (TA) systems have captivated the attention of many scientists. Recent studies have demonstrated that TA systems play a key role in phage inhibition. The aim of the present study was to investigate the role of the PemIK (PemK/PemI) type II TA system in phage inhibition by its intrinsic expression in clinical strains of Klebsiella pneumoniae carrying the lncL plasmid, which harbours the carbapenemase OXA-48 and the PemK/PemI TA system.

View Article and Find Full Text PDF

To optimize phage therapy, we need to understand how bacteria evolve against phage attacks. One of the main problems of phage therapy is the appearance of bacterial resistance variants. The use of genomics to track antimicrobial resistance is increasingly developed and used in clinical laboratories.

View Article and Find Full Text PDF

Objectives: To search for new means of combatting carbapenemase-producing strains of Klebsiella pneumoniae by repurposing the anti-helminth drug niclosamide as an antimicrobial agent and combining it with the efflux pump inhibitor (EPI) phenyl-arginine-β-naphthylamide (PaβN).

Methods: Niclosamide and PaβN MICs were determined for six clinical K. pneumoniae isolates harbouring different carbapenemases by broth microdilution and chequerboard assays.

View Article and Find Full Text PDF

is a human pathogen that worsens the prognosis of many immunocompromised patients. Here, we annotated and compared the genomes of two lytic phages that infect clinical strains of (vB_KpnM-VAC13 and vB_KpnM-VAC66) and phenotypically characterized vB_KpnM-VAC66 (time of adsorption of 12 min, burst size of 31.49 ± 0.

View Article and Find Full Text PDF

Klebsiella pneumoniae is an opportunistic Gram-negative pathogen that employs different strategies (resistance and persistence) to counteract antibiotic treatments. This study aimed to search for new means of combatting imipenem-resistant and persister strains of K. pneumoniae by repurposing the anticancer drug mitomycin C as an antimicrobial agent and by combining the drug and the conventional antibiotic imipenem with the lytic phage vB_KpnM-VAC13.

View Article and Find Full Text PDF

One of the biggest threats we face globally is the emergence of antimicrobial-resistant (AMR) bacteria, which runs in parallel with the lack in the development of new antimicrobials. Among these AMR bacteria pathogens belonging to the ESKAPE group can be highlighted ( spp., , , , and spp.

View Article and Find Full Text PDF

Quorum sensing modulates bacterial collective behaviors including biofilm formation, motility and virulence in the important human pathogen Acinetobacter baumannii. Disruption of quorum sensing has emerged as a promising strategy with important therapeutic potential. In this work, we show that light modulates the production of acyl-homoserine lactones (AHLs), which were produced in higher levels in the dark than under blue light at environmental temperatures, a response that depends on the AHL synthase, AbaI, and on the photoreceptor BlsA.

View Article and Find Full Text PDF

Lupine (Lupinus sp.) is a valuable source of plant proteins. There is little knowledge on the impact of food processing on composition and sensory properties of lupine products.

View Article and Find Full Text PDF
Article Synopsis
  • The ATCC 19606 isolate, recovered in the US before 1948, has been widely used in studies related to antibiotic resistance and pathogenesis, though its complete genome was not available until recently.
  • A detailed analysis revealed its genome size of 3.91-Mbp, including two small cryptic plasmids and a novel 41.2 kb complete prophage, accomplished through short-read and long-read sequencing methods.
  • Despite being antibiotic-sensitive, comparisons with other ST52 strains suggest that recent isolates may have accumulated antibiotic-resistance genes through plasmids, raising concerns about future resistance to modern antibiotics.
View Article and Find Full Text PDF

Bacteriophages are important in bacterial ecology and evolution. is the most prevalent bacterial pathogen in chronic bronchopulmonary infection in cystic fibrosis (CF). In this study, we used bioinformatics, microbiological and microscopy techniques to analyze the bacteriophages present in 24 isolates belonging to the international CF clone (ST274-CC274).

View Article and Find Full Text PDF

At the end of 2019, a new disease appeared and spread all over the world, the COVID-19, produced by the coronavirus SARS-CoV-2. As a consequence of this worldwide health crisis, the scientific community began to redirect their knowledge and resources to fight against it. Here we summarize the recent research on viruses employed as therapy and diagnostic of COVID-19: (i) viral-vector vaccines both in clinical trials and pre-clinical phases; (ii) the use of bacteriophages to find antibodies specific to this virus and some studies of how to use the bacteriophages themselves as a treatment against viral diseases; and finally, (iii) the use of CRISPR-Cas technology both to obtain a fast precise diagnose of the patient and also the possible use of this technology as a cure.

View Article and Find Full Text PDF