Viruses and their hosts are involved in an 'arms race' where they continually evolve mechanisms to overcome each other. It has long been proposed that intrinsic disorder provides a substrate for the evolution of viral hijack functions and that short linear motifs (SLiMs) are important players in this process. Here, we review evidence in support of this tenet from two model systems: the papillomavirus E7 protein and the adenovirus E1A protein.
View Article and Find Full Text PDFLinkers are crucial to the functions of multidomain proteins as they couple functional units to encode regulation such as auto-inhibition, enzyme targeting or tuning of interaction strength. A linker changes reactions from bimolecular to unimolecular, and the equilibrium and kinetics is thus determined by the properties of the linker rather than concentrations. We present a theoretical workflow for estimating the functional consequences of tethering by a linker.
View Article and Find Full Text PDF(1) Background: Processivity is common among enzymes and mechanochemical motors that synthesize, degrade, modify or move along polymeric substrates, such as DNA, RNA, polysaccharides or proteins. Processive enzymes can make multiple rounds of modification without releasing the substrate/partner, making their operation extremely effective and economical. The molecular mechanism of processivity is rather well understood in cases when the enzyme structurally confines the substrate, such as the DNA replication factor PCNA, and also when ATP energy is used to confine the succession of molecular events, such as with mechanochemical motors.
View Article and Find Full Text PDF