Publications by authors named "Lucia Angella"

Krabbe disease (KD) is a rare disorder arising from the deficiency of the lysosomal enzyme galactosylceramidase (GALC), leading to the accumulation of the cytotoxic metabolite psychosine (PSY) in the nervous system. This accumulation triggers demyelination and neurodegeneration, and despite ongoing research, the underlying pathogenic mechanisms remain incompletely understood, with no cure currently available. Previous studies from our lab revealed the involvement of autophagy dysfunctions in KD pathogenesis, showcasing p62-tagged protein aggregates in the brains of KD mice and heightened p62 levels in the KD sciatic nerve.

View Article and Find Full Text PDF

In acute malaria, the bulk of erythrocyte loss occurs after therapy, with a nadir of hemoglobin generally observed 3-7 days after treatment. The fine mechanisms leading to this early post-treatment anemia are still elusive. We explored pathological changes in RBC subpopulations by quantifying biochemical and mechanical alterations during severe malaria treated with artemisinin derivatives, a drug family that induce "pitting" in the spleen.

View Article and Find Full Text PDF

Krabbe disease (KD; or globoid cell leukodystrophy) is an autosomal recessive lysosomal storage disorder caused by deficiency of the galactosylceramidase (GALC) enzyme. No cure is currently available for KD. Clinical applied treatments are supportive only.

View Article and Find Full Text PDF

Lysosomal storage disorders (LSDs) result from an enzyme deficiency within lysosomes. The systemic administration of the missing enzyme, however, is not effective in the case of LSDs with central nervous system (CNS)-involvement. Here, an enzyme delivery system based on the encapsulation of cross-linked enzyme aggregates (CLEAs) into poly-(lactide-co-glycolide) (PLGA) nanoparticles (NPs) functionalized with brain targeting peptides (Ang2, g7 or Tf2) is demonstrated for Krabbe disease, a neurodegenerative LSD caused by galactosylceramidase (GALC) deficiency.

View Article and Find Full Text PDF

Krabbe disease (KD) is a childhood leukodystrophy with no cure currently available. KD is due to a deficiency of a lysosomal enzyme called galactosyl-ceramidase (GALC) and is characterized by the accumulation in the nervous system of the sphingolipid psychosine (PSY), whose cytotoxic molecular mechanism is not fully known yet. Here, we study the expression of some fundamental autophagy markers (LC3, p62, and Beclin-1) in a KD murine model [the twitcher (TWI) mouse] by immunohistochemistry and Western blot.

View Article and Find Full Text PDF

Krabbe disease is a rare, childhood lysosomal storage disorder caused by a deficiency of galactosylceramide beta-galactosidase (GALC). The major effect of GALC deficiency is the accumulation of psychosine in the nervous system and widespread degeneration of oligodendrocytes and Schwann cells, causing rapid demyelination. The molecular mechanisms of Krabbe disease are not yet fully elucidated and a definite cure is still missing.

View Article and Find Full Text PDF

Polymeric nanoparticles (NPs) represent one of the most promising tools in nanomedicine and have been extensively studied for the delivery of water-insoluble drugs. However, the efficient loading of therapeutic enzymes and proteins in polymer-based nanostructures remains an open challenge. Here, we report a synthesis method for a new enzyme delivery system based on cross-linked enzyme aggregates (CLEAs) encapsulation into poly(lactide- co-glycolide) (PLGA) NPs.

View Article and Find Full Text PDF

Globoid cell leukodystrophy (GLD) is a rare, rapidly progressing childhood leukodystrophy triggered by deficit of the lysosomal enzyme galactosylceramidase (GALC) and characterized by the accumulation of galactosylsphingosine (psychosine; PSY) in the nervous system. PSY is a cytotoxic sphingolipid, which leads to widespread degeneration of oligodendrocytes and Schwann cells, causing demyelination. Here we report on autophagy in the human oligodendrocyte cell line MO3.

View Article and Find Full Text PDF