Publications by authors named "Lucas Viani"

A symmetrical cyanine dye chromophore is modified with different counteranions to study the effect on crystal packing, polarizability, thermal stability, optical properties, light absorbing layer morphology, and organic photovoltaic (OPV) device parameters. Four sulfonate-based anions and the bulky bistriflylimide anion are introduced to the 2-[5-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3-pentadien-1-yl]-1,3,3-trimethyl-3H-indolium chromophore using an Amberlyst A26 (OH form) anion exchanger. Anionic charge distribution clearly correlates with device performance, whereby an average efficiency of 2% was reached in a standard bilayer organic solar.

View Article and Find Full Text PDF

Carotenoids are important actors both in light-harvesting (LH) and in photoprotection functions of photosynthetic pigment-protein complexes. A deep theoretical investigation of this multiple role is still missing owing to the difficulty of describing the delicate interplay between electronic and nuclear degrees of freedom. A possible strategy is to combine accurate quantum mechanical (QM) methods with classical molecular dynamics.

View Article and Find Full Text PDF

Light-harvesting pigment-protein complexes (PPC) represent the fundamental units through which the photosynthetic organisms absorb sunlight and funnel the energy to the reaction centre for carrying out the primary energy conversion reactions of photosynthesis. Here we apply a multiscale computational strategy to a specific PPC present in the photosystem II of plants and algae (CP29) to investigate in what detail should the environment effects due to protein and membrane/solvent be included for an accurate description of optical spectra. We find that a refinement of the crystal structure is needed before any meaningful quantum chemical calculations of pigment transition energies can be performed.

View Article and Find Full Text PDF

Advances in electronic spectroscopies with femtosecond time resolution have provided new information on the excitonic processes taking place during the energy conversion in natural photosynthetic antennae. This has promoted the development of new theoretical protocols aiming at accurately describing the properties and mechanisms of exciton formation and relaxation. In this perspective, we provide an overview of the quantum chemical based approaches, trying to underline both the potentials of the methods and their weaknesses.

View Article and Find Full Text PDF

Plasmonic systems, such as metal nanoparticles, are becoming increasingly important in spectroscopies and devices because of their ability to enhance, even by several orders of magnitude, the photophysical properties of neighboring systems. In particular, it has been shown both theoretically and experimentally that combining nanoplasmonic devices with natural light-harvesting proteins substantially increases the fluorescence and absorption properties of the system. This kind of biohybrid device can have important applications in the characterization and design of efficient light-harvesting systems.

View Article and Find Full Text PDF

Long-lived quantum coherences observed in several photosynthetic pigment-protein complexes at low and at room temperatures have generated a heated debate over the impact that the coupling of electronic excitations to molecular vibrations of the relevant actors (pigments, proteins and solvents) has on the excitation energy transfer process. In this work, we use a combined MD and QM/MMPol strategy to investigate the exciton-phonon interactions in the PE545 light-harvesting complex by computing the spectral densities for each pigment and analyzing their consequences in the exciton dynamics. Insights into the origin of relevant peaks, as well as their differences among individual pigments, are provided by correlating them with normal modes obtained from a quasi-harmonic analysis of the motions sampled by the pigments in the complex.

View Article and Find Full Text PDF

We present the mathematical derivation and the computational implementation of the analytical geometry derivatives for a polarizable QM/MM model (QM/MMPol). In the adopted QM/MMPol model, the focused part is treated at QM level of theory, while the remaining part (the environment) is described classically as a set of fixed charges and induced dipoles. The implementation is performed within the ONIOM procedure, resulting in a polarizable embedding scheme, which can be applied to solvated and embedded systems and combined with different polarizable force fields available in the literature.

View Article and Find Full Text PDF

Charge-carrier transport in thin-film organic field-effect transistors takes place within the first (few) molecular layer(s) of the active organic material in contact with the gate dielectric. Here, we use atomistic molecular dynamics simulations to evaluate how interactions with bare amorphous silica surfaces that vary in terms of surface potential influence the molecular packing and dynamics of a monolayer pentacene film. The results indicate that the long axis of the pentacene molecules has a non-negligible tilt angle away from the surface normal.

View Article and Find Full Text PDF

The recent discovery of long-lasting quantum coherence effects in photosynthetic pigment-protein complexes has challenged our view of the role that protein motions play in light-harvesting processes. Several groups have suggested that correlated fluctuations involving the pigments site energies and couplings could be at the origin of such unexpected behavior. Here we combine molecular dynamics simulations with quantum mechanics/molecular mechanics calculations to analyze the degree of correlated fluctuations in the PE545 complex of Rhodomonas sp.

View Article and Find Full Text PDF

Benzodithiophene (BDT) was symmetrically bisubstituted in the terminal positions with five different alkynes C≡C-(C(n)H(2n+1)) with n = 4, 6, 8, 10, 12. The materials were characterized as potential materials for field-effect transistor applications. Electrochemical measurements in solution and photophysical measurements in solution and in the solid state, together with UV photoelectron spectroscopy in air and quantum-chemical calculations, elucidate the nature of the frontier orbitals and of the excited states as well as their deactivation pathways.

View Article and Find Full Text PDF

The alignment and relaxation dynamics of a polar dye molecule, N,N-dimethyl-4(4-nitrophenylazo)aniline (DNAA), in zeolite L and perhydrotriphenylene (PHTP) channels were investigated by means of a combination of optical, dielectric, and quantum-chemical methods. Both the zeolite L and PHTP channels enable the dye molecules to align along the channel axis. An amplified net dipole moment of DNAA in PHTP is observed and attributed to enhanced 1D close alignment of dye molecules.

View Article and Find Full Text PDF

A great deal of interest has recently focused on host-guest systems consisting of one-dimensional collinear arrays of conjugated molecules encapsulated in the channels of organic or inorganic matrices. Such architectures allow for controlled charge and energy migration processes between the interacting guest molecules and are thus attractive in the field of organic electronics. In this context, we characterize here at a quantum-chemical level the molecular parameters governing charge transport in the hopping regime in 1D arrays built with different types of molecules.

View Article and Find Full Text PDF

We have studied experimentally and theoretically the optical and electrochemical properties of small band gap oligo(7,7'-bis(thiophen-2-yl)-5,5'-bisthieno[3,4-b]pyrazine)s with alternating blocks of bithiophene units and bisthienopyrazine units up to a total length of 16 units. The optical absorptions of the ground state, the triplet excited state, and the corresponding radical cation have been identified and shift to lower energy with increasing chain length. The optical absorption correlates well with quantum chemical calculations and the electrochemical band gap.

View Article and Find Full Text PDF

Systematic control of 3D energy transfer (ET) dynamics is achieved in supramolecular nanostructured host-guest systems using spacer-functionalized guest chromophores. Quantum chemistry-based Monte Carlo simulations reveal the strong impact of the spacer length on the ET dynamics, efficiency, and dimensionality. Remarkably high exciton diffusion lengths demonstrate that there is ample scope for optimizing oligomeric or polymeric optoelectronic devices.

View Article and Find Full Text PDF

Small band gap polymers may increase the energy conversion efficiency of polymer solar cells by increased absorption of sunlight. Here we present a combined experimental and theoretical study on the optical and electrochemical properties of a series of well-defined, lengthy, small band gap oligo(5,7-bis(thiophen-2-yl)thieno[3,4-b]pyrazine)s ( E g = 1.50 eV) having alternating donor and acceptor units.

View Article and Find Full Text PDF