Lipid accumulation and inflammation act together to induce, sustain, and further development of chronic liver disease. Hepatitis C virus (HCV) infection induces metabolic and immune changes in liver macrophages, promoting lipid accumulation and inflammation that synergize and culminate in the development of steatohepatitis and fibrogenesis. Chronic HCV patients have increased liver macrophages with disruptions in cholesterol metabolism and alterations in inflammatory mediators.
View Article and Find Full Text PDFOncotarget
September 2021
Tobacco smoke and red/processed meats are well-known risk factors for colorectal cancer (CRC). Most research has focused on studies of normal colon biopsies in epidemiologic studies or treatment of CRC cell lines . These studies are often constrained by challenges with accuracy of self-report data or, in the case of CRC cell lines, small sample sizes and lack of relationship to normal tissue at risk.
View Article and Find Full Text PDFMechanisms underlying aspirin chemoprevention of colorectal cancer remain unclear. Prior studies have been limited because of the inability of preclinical models to recapitulate human normal colon epithelium or cellular heterogeneity present in mucosal biopsies. To overcome some of these obstacles, we performed aspirin treatment of colon organoids derived from normal mucosal biopsies to reveal transcriptional networks relevant to aspirin chemoprevention.
View Article and Find Full Text PDFIntroduction: Familial adenomatous polyposis (FAP) is a hereditary colorectal cancer (CRC) syndrome characterized by accelerated adenoma development due to inherited (or de novo) mutations in the APC regulator of WNT signaling pathway (APC) gene. The mechanism underlying this accelerated polyp development in subjects with FAP has not been defined. Given that LGR5+ stem cells drive crypt cell proliferation, we hypothesized that FAP crypts would demonstrate aberrant leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) staining patterns.
View Article and Find Full Text PDFAlcohol is a consistently identified risk factor for colon cancer. However, the molecular mechanism underlying its effect on normal colon crypt cells remains poorly understood. We employed RNA-sequencing to asses transcriptomic response to ethanol exposure (0.
View Article and Find Full Text PDFIntroduction: Colorectal cancer is a common malignancy that can be cured when detected early, but recurrence among survivors is a persistent risk. A field effect of cancer in the colon has been reported and could have implications for surveillance, but studies to date have been limited. A joint analysis of pooled transcriptomic data from all available bulk RNA-sequencing data sets of healthy, histologically normal tumor-adjacent, and tumor tissues was performed to provide an unbiased assessment of field effect.
View Article and Find Full Text PDFIn this study we aimed to explore the potential biological effect of ethanol exposure on healthy colon epithelial cells using normal human colon 3D organoid "mini-gut" cultures. In numerous published studies ethanol use has been shown to be an environmental risk factor for colorectal cancer (CRC) development; however, the influence of ethanol exposure on normal colon epithelial cell biology remains poorly understood. We investigated the potential molecular effects of ethanol exposure in normal colon 3D organoids in a small pilot study (n = 3) using RNA-seq and ATAC-seq.
View Article and Find Full Text PDFZika virus (ZIKV) is an enveloped, single-stranded, positive-sense RNA virus of the Flaviviridae family that has emerged as a public health threat because of its global transmission and link to microcephaly. Currently there is no vaccine for this virus. Conversion of cholesterol to 25-hydroxycholesterol by cholesterol 25-hydroxylase (CH25H) has been shown to have broad antiviral properties.
View Article and Find Full Text PDFUnlabelled: The liver maintains an immunologically tolerant environment as a result of continuous exposure to food and bacterial constituents from the digestive tract. Hepatotropic pathogens can take advantage of this niche and establish lifelong chronic infections causing hepatic fibrosis and hepatocellular carcinoma. Macrophages (Mϕ) play a critical role in regulation of immune responses to hepatic infection and regeneration of tissue.
View Article and Find Full Text PDFUnderstanding of antigen-presenting cell (APC) participation in tissue inflammation and metabolism has advanced through numerous studies using systems biology approaches. Previously unrecognized connections between these research areas have been elucidated in the context of inflammatory disease involving innate and adaptive immune responses. A new conceptual framework bridges APC biology, metabolism, and cytokines in the generation of effective T-cell responses.
View Article and Find Full Text PDF