Publications by authors named "Lucas Struble"

Human RAD52 protein binds DNA and is involved in genomic stability maintenance and several forms of DNA repair, including homologous recombination and single-strand annealing. Despite its importance, there are very few structural details about the variability of the RAD52 ring size and the RAD52 C-terminal protein-protein interaction domains. Even recent attempts to employ cryogenic electron microscopy (cryoEM) methods on full-length yeast and human RAD52 do not reveal interpretable structures for the C-terminal half that contains the replication protein A (RPA) and RAD51 binding domains.

View Article and Find Full Text PDF

Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting superoxide (O) to molecular oxygen (O) and hydrogen peroxide (HO) with proton-coupled electron transfers (PCETs). Human MnSOD has evolved to be highly product inhibited to limit the formation of HO, a freely diffusible oxidant and signaling molecule. The product-inhibited complex is thought to be composed of a peroxide (O) or hydroperoxide (HO) species bound to Mn ion and formed from an unknown PCET mechanism.

View Article and Find Full Text PDF

Proliferating cell nuclear antigen (PCNA), the homotrimeric eukaryotic sliding clamp protein, recruits and coordinates the activities of a multitude of proteins that function on DNA at the replication fork. Chromatin assembly factor 1 (CAF-1), one such protein, is a histone chaperone that deposits histone proteins onto DNA immediately following replication. The interaction between CAF-1 and PCNA is essential for proper nucleosome assembly at silenced genomic regions.

View Article and Find Full Text PDF

Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O ) to molecular oxygen (O) and hydrogen peroxide (HO) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pK due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD.

View Article and Find Full Text PDF

Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O ) to molecular oxygen (O ) and hydrogen peroxide (H O ) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pK due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD.

View Article and Find Full Text PDF

Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting to and with proton-coupled electron transfers (PCETs). Since changes in mitochondrial concentrations are capable of stimulating apoptotic signaling pathways, human MnSOD has evolutionarily gained the ability to be highly inhibited by its own product, . A separate set of PCETs is thought to regulate product inhibition, though mechanisms of PCETs are typically unknown due to difficulties in detecting the protonation states of specific residues that coincide with the electronic state of the redox center.

View Article and Find Full Text PDF

Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting O to O and H O with proton-coupled electron transfers (PCETs). Since changes in mitochondrial H O concentrations are capable of stimulating apoptotic signaling pathways, human MnSOD has evolutionarily gained the ability to be highly inhibited by its own product, H O . A separate set of PCETs is thought to regulate product inhibition, though mechanisms of PCETs are typically unknown due to difficulties in detecting the protonation states of specific residues that coincide with the electronic state of the redox center.

View Article and Find Full Text PDF

The severe consequences of the Zika virus (ZIKV) infections resulting in congenital Zika syndrome in infants and the autoimmune Guillain-Barre syndrome in adults warrant the development of safe and efficacious vaccines and therapeutics. Currently, there are no approved treatment options for ZIKV infection. Herein, we describe the development of a bacterial ferritin-based nanoparticle vaccine candidate for ZIKV.

View Article and Find Full Text PDF

Chlamydia trachomatis (ct) is the most reported bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Caseinolytic proteases (ClpP) from pathogenic bacteria are attractive antibiotic targets, particularly for bacterial species that form persister colonies with phenotypic resistance against common antibiotics. ClpP functions as a multisubunit proteolytic complex, and bacteria are eradicated when ClpP is disrupted.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by SARS-CoV-2 infection has led to socio-economic shutdowns and the loss of over 5 million lives worldwide. There is a need for the identification of therapeutic targets to treat COVID-19. SARS-CoV-2 spike is a target of interest for the development of therapeutic targets.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by SARS-CoV-2 has applied significant pressure on overtaxed healthcare around the world, underscoring the urgent need for rapid diagnosis and treatment. We have developed a bacterial strategy for the expression and purification of a SARS-CoV-2 spike protein receptor binding domain (RBD) that includes the SD1 domain. Bacterial cytoplasm is a reductive environment, which is problematic when the recombinant protein of interest requires complicated folding and/or processing.

View Article and Find Full Text PDF

Synthetic lethality is a successful strategy employed to develop selective chemotherapeutics against cancer cells. Inactivation of RAD52 is synthetically lethal to homologous recombination (HR) deficient cancer cell lines. Replication protein A (RPA) recruits RAD52 to repair sites, and the formation of this protein-protein complex is critical for RAD52 activity.

View Article and Find Full Text PDF

Unlabelled: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The initial interaction between Transmembrane Serine Protease 2 (TMPRSS2) primed SARS-CoV-2 spike (S) protein and host cell receptor angiotensin-converting enzyme 2 (ACE-2) is a pre-requisite step for this novel coronavirus pathogenesis. Here, we expressed a GFP-tagged SARS-CoV-2 S-Ectodomain in Tni insect cells.

View Article and Find Full Text PDF

It has been widely accepted that mitochondria-dependent apoptosis initiates when select BH3-only proteins (BID, BIM, etc.) directly engage and allosterically activate effector proteins BAX/BAK. Here, through reconstitution of cells lacking all eight pro-apoptotic BH3-only proteins, we demonstrate that all BH3-only proteins primarily target the anti-apoptotic BCL-2 proteins BCL-xL/MCL-1, whose simultaneous suppression enables membrane-mediated spontaneous activation of BAX/BAK.

View Article and Find Full Text PDF

Inosine triphosphate pyrophosphatase (ITPA), a key enzyme involved in maintaining the purity of cellular nucleoside triphosphate pools, specifically recognizes inosine triphosphate and xanthosine triphosphate (including the deoxyribose forms) and detoxifies them by catalyzing the hydrolysis of a phosphoanhydride bond, releasing pyrophosphate. This prevents their inappropriate use as substrates in enzymatic reactions utilizing (d)ATP or (d)GTP. A human genetic polymorphism leads to the substitution of Thr for Pro32 (P32T) and causes ITPA deficiency in erythrocytes, with heterozygotes having on average 22.

View Article and Find Full Text PDF