Publications by authors named "Lucas Sosa-Alderete"

Previous findings have shown that phospholipase D (PLD) contributes to the response to long-term chilling stress in barley by regulating the balance of proline (Pro) levels. Although Pro accumulation is one of the most prominent changes in barley roots exposed to this kind of stress, the regulation of its metabolism during recovery from stress remains unclear. Research has mostly focused on the responses to stress per se, and not much is known about the dynamics and mechanisms underlying the subsequent recovery.

View Article and Find Full Text PDF

The degradation of three antibiotics (sulfamethoxazole, trimethoprim, and ofloxacin) and one synthetic hormone (17 α-ethinylestradiol) was investigated in three in-vitro biotransformation models (i.e., pure enzymes, hairy root, and cultures) for anticipating the relevance of the formation of transformation products (TPs) in constructed wetlands (CWs) bioaugmented with fungus.

View Article and Find Full Text PDF

Plants like almost all living organisms, have developed a biological clock or circadian clock (CC) capable of synchronizing and adjusting various metabolic and physiological processes at certain times of the day and in a period of 24 h. This endogenous timekeeping is able to predict the environmental changes providing adaptive advantages against stressful conditions. Therefore, the aim of this work was to analyze the possible link between metabolism of xenobiotic compounds (MXC) and the CC.

View Article and Find Full Text PDF

Tumors of the nervous system including glioblastoma multiforme (GBM) are the most frequent and aggressive form of brain tumors; however, little is known about the impact of the circadian timing system on the formation, growth, and treatment of these tumors. We investigated day/night differences in tumor growth after injection of A530 glioma cells isolated from malignant peripheral nerve sheath tumor (MPNSTs) of NPcis (Trp53 ; Nf1 ) mice. Synchronized A530 cell cultures expressing typical glial markers were injected at the beginning of the day or night into the sciatic nerve zone of C57BL/6 mice subject to a 12:12 hours light/dark (LD) cycle or after being released to constant darkness (DD).

View Article and Find Full Text PDF

Glycerophospholipids (GPLs) from cell membranes (CM) are a proper source for the synthesis of lipid messengers able to activate signal pathways that will define the plant survival under changing and stressful environmental conditions. Little is known about how GPLs metabolism (GPLsM) is regulated and the effects of phenol treatment on GPLs composition. In this work, we studied the effects of phenol both on GPLs turnover and on the expression of GPLsM-related genes potentially regulated by the circadian clock, using tobacco hairy root cultures (HRC).

View Article and Find Full Text PDF

Diabetes is a disease that affects millions of people in the World, constituting a global problem. Patients are administered insulin subcutaneous injections, resulting in high costs and frequent infections in the injection site. A possible solution to this problem may be the use of nanotechnology.

View Article and Find Full Text PDF

Even in immortalized cell lines, circadian clocks regulate physiological processes in a time-dependent manner, driving transcriptional and metabolic rhythms, the latter being able to persist without transcription. Circadian rhythm disruptions in modern life (shiftwork, jetlag, etc.) may lead to higher cancer risk.

View Article and Find Full Text PDF

The circadian clock is an endogenous system that allows organisms to daily adapt and optimize their physiology and metabolism. We studied the key circadian clock gene (CCG) orthologs in Nicotiana tabacum seedlings and in hairy root cultures (HRC). Putative genes involved in the metabolism of xenobiotic compounds (MXC) were selected and their expression profiles were also analyzed.

View Article and Find Full Text PDF

Common vetch (Vicia sativa L.) is a legume species with an extensive agricultural use. However, the phytoremediation potentiality of this species has not been sufficiently explored because little is known about its resistance to inorganic and organic pollutants.

View Article and Find Full Text PDF

Phenol is released to the environment from a wide variety of industrial effluents and it causes severe problems to human health and ecosystem. In the present study, we determined that Nicotiana tabacum hairy roots (HRs) double transgenic (DT) for two peroxidase genes (tpx1 and tpx2) showed higher phenol removal efficiency than wild type (WT) HRs after 120 h of phenol treatment at the expense of endogenous H(2)O(2). Besides, to determine whether phenol could induce oxidative stress on tobacco HRs, we analyzed the antioxidant response, superoxide anion (O(2)(-)) localization and malondialdehyde (MDA) levels.

View Article and Find Full Text PDF

Transgenic hairy root (HR) systems constitute an interesting alternative to improve the efficiency of phytoremediation process. Since peroxidases (Px) have been associated with phenolic compounds removal, in the present work, transgenic tobacco HR, which expressed basic Px genes from tomato (tpx1 and tpx2), were established and assayed for phenol removal. Tobacco HR clones were obtained, including those transgenic for TPX1 or TPX2, those double transgenic (DT) for both Px and the corresponding controls.

View Article and Find Full Text PDF