Craniofacial volumetric muscle loss (VML) injuries can occur as a result of severe trauma, surgical excision, inflammation, and congenital or other acquired conditions. Treatment of craniofacial VML involves surgical, functional muscle transfer. However, these procedures are unable to restore normal function, sensation, or expression, and more commonly, these conditions go untreated.
View Article and Find Full Text PDFCurrent treatment options for craniofacial volumetric muscle loss (VML) have disadvantages and cannot fully restore normal function. Bio-inspired semisynthetic acrylated hyaluronic acid (AcHyA) hydrogel, which fills irregularly shaped defects, resembles an extracellular matrix, and induces a minimal inflammatory response, has shown promise in experimental studies of extremity VML. We therefore sought to study AcHyA hydrogel in the treatment of craniofacial VML.
View Article and Find Full Text PDFTherapeutic plasma exchange (TPE) has traditionally been used to selectively remove pathologic contents including autoantibodies, abnormal proteins, immune complexes, or toxins from a patient's plasma. In addition to the removal of molecular contributors to disease, fluid replacement and infusion of beneficial plasma constituents including albumin can be tapered based on the pathophysiologic mechanisms of the offending disease. This treatment modality has shown efficacy in symptomatic relief and slowing of disease progression for various neurologic, immunologic, and hematologic diseases.
View Article and Find Full Text PDFMost deaths (80%) from cervical cancer occur in regions lacking adequate screening infrastructures or ready access to them. In contrast, most developed countries now embrace human papillomavirus (HPV) analyses as standalone screening; this transition threatens to further widen the resource gap. We describe the development of a DNA-focused digital microholography platform for point-of-care HPV screening, with automated readouts driven by customized deep-learning algorithms.
View Article and Find Full Text PDFThe identification of patients with aggressive cancer who require immediate therapy is a health challenge in low-income and middle-income countries. Limited pathology resources, high healthcare costs and large-case loads call for the development of advanced standalone diagnostics. Here, we report and validate an automated, low-cost point-of-care device for the molecular diagnosis of aggressive lymphomas.
View Article and Find Full Text PDFPurpose: Transamniotic stem cell therapy (TRASCET) with select mesenchymal stem cells (MSCs) has been shown to induce partial or complete skin coverage of spina bifida in rodents. Clinical translation of this emerging therapy hinges on its efficacy in larger animal models. We sought to study TRASCET in a model requiring intra-amniotic injections 60 times larger than those performed in the rat.
View Article and Find Full Text PDFBackground/purpose: Transamniotic stem cell therapy (TRASCET) with amniotic fluid mesenchymal stem cells (afMSCs) has been shown to mitigate bowel damage in a rodent model of gastroschisis. As a prerequisite to clinical translation, we sought to study TRASCET in a larger animal model.
Methods: New Zealand rabbit fetuses (n=64) with surgically created gastroschisis were divided into three groups.