Publications by authors named "Lucas R Smith"

Animals that require purposeful movement for survival are endowed with mechanosensory neurons called proprioceptors that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we have identified distinct and nonredundant roles for two voltage-gated sodium channels (Nas), Na1.

View Article and Find Full Text PDF

Collagen fiber architecture within the skeletal muscle extracellular matrix (ECM) is significant to passive muscle mechanics. While it is thought that collagen fibers re-orient themselves in response to changes in muscle length, this has not been dynamically visualized and quantified within a muscle. The goal of this study was to measure changes in collagen alignment across a range of muscle lengths and compare the corresponding alignment to muscle mechanics.

View Article and Find Full Text PDF
Article Synopsis
  • Cerebral palsy (CP) is linked to upper motoneuron disorders that disrupt muscle function due to issues in the developing brain, causing muscle stiffness and changes in extracellular matrix (ECM) architecture.
  • A study collected muscle biopsies from children with CP and typically developing (TD) individuals to analyze how muscle and ECM changes affect stiffness, gait, and joint function.
  • Results showed that while muscle mechanics were similar between TD and CP, stiffness and collagen properties in CP hamstrings correlated with reduced knee motion, indicating that ECM properties may change significantly during muscle stretching in CP.
View Article and Find Full Text PDF

Aim: To evaluate the mechanosensitivity of muscle satellite cells (MuSCs) and fibro-adipogenic progenitors (FAPs) in cerebral palsy (CP) and the efficacy of the drug verteporfin in restoring cells' regenerative capacity.

Method: Muscle biopsies were collected from six children with CP and six typically developing children. MuSCs and FAPs were isolated and plated on collagen-coated polyacrylamide gels at stiffnesses of 0.

View Article and Find Full Text PDF

Spheroids exhibit enhanced cell-cell interactions that facilitate improved survival and mimic the physiological cellular environment . Cell spheroids have been successfully used as building blocks for engineered tissues, yet the viability of this approach with skeletal muscle spheroids is poorly understood, particularly when incorporated into three-dimensional (3D) constructs. Bioprinting is a promising strategy to recapitulate the hierarchical organization of native tissue that is fundamental to its function.

View Article and Find Full Text PDF

The muscle extracellular matrix (ECM) forms a complex network of collagens, proteoglycans, and other proteins that produce a favorable environment for muscle regeneration, protect the sarcolemma from contraction-induced damage, and provide a pathway for the lateral transmission of contractile force. In each of these functions, the structure and organization of the muscle ECM play an important role. Many aspects of collagen architecture, including collagen alignment, cross linking, and packing density affect the regenerative capacity, passive mechanical properties, and contractile force transmission pathways of skeletal muscle.

View Article and Find Full Text PDF

Fibro-adipogenic progenitors (FAPs) are key regulators of skeletal muscle regeneration and homeostasis. However, dysregulation of these cells leads to fibro-fatty infiltration across various muscle diseases. FAPs are the key source of extracellular matrix (ECM) deposition in muscle, and disruption to this process leads to a pathological accumulation of ECM, known as fibrosis.

View Article and Find Full Text PDF

The healthy skeletal muscle extracellular matrix (ECM) has several functions including providing structural integrity to myofibers, enabling lateral force transmission, and contributing to overall passive mechanical properties. In diseases such as Duchenne Muscular dystrophy, there is accumulation of ECM materials, primarily collagen, which results in fibrosis. Previous studies have shown that fibrotic muscle is often stiffer than healthy muscle, in part due to the increased number and altered architecture of collagen fibers within the ECM.

View Article and Find Full Text PDF

The lack of vascularization associated with deep burns delays the construction of wound beds, increases the risks of infection, and leads to the formation of hypertrophic scars or disfigurement. To address this challenge, we have fabricated a multi-functional pro-angiogenic molecule by grafting integrin αvβ3 ligand LXW7 and collagen-binding peptide (SILY) to a dermatan sulfate (DS) glycosaminoglycan backbone, named LXW7-DS-SILY (LDS), and further employed this to functionalize collagen-based Integra scaffolds. Using a large deep burn wound model in C57/BLK6 mice (8-10 weeks old, 26-32g, = 39), we demonstrated that LDS-modified collagen-based Integra scaffolds loaded with endothelial cells (ECs) accelerate wound healing rate, re-epithelialization, vascularization, and collagen deposition.

View Article and Find Full Text PDF

The therapeutic efficacy of mesenchymal stromal cells (MSCs) for tissue regeneration is critically linked to the potency of the complex mixture of growth factors, cytokines, exosomes, and other biological cues that they secrete. The duration of cell-based approaches is limited by rapid loss of cells upon implantation, motivating the need to prolong cell viability and extend the therapeutic influence of the secretome. We and others demonstrated that the secretome is upregulated when MSCs are formed into spheroids.

View Article and Find Full Text PDF

In Duchenne muscular dystrophy (DMD), a lack of functional dystrophin leads to myofiber instability and progressive muscle damage that results in fibrosis. While fibrosis is primarily characterized by an accumulation of extracellular matrix (ECM) components, there are changes in ECM architecture during fibrosis that relate more closely to functional muscle stiffness. One of these architectural changes in dystrophic muscle is collagen cross-linking, which has been shown to increase the passive muscle stiffness in models of fibrosis including the mdx mouse, a model of DMD.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic kidney disease (CKD) leads to a reduced anabolic response to insulin, contributing to protein-energy wasting, which can be assessed through targeted metabolic profiling during oral glucose tolerance testing (OGTT).
  • A study involving 41 CKD patients and 20 healthy controls revealed that CKD participants exhibited a limited metabolic response to glucose ingestion, particularly affecting mitochondrial energy metabolism and specific metabolites.
  • The findings indicate significant disruptions in energy metabolism for CKD patients and highlight the need for further research on treatments like insulin sensitizers and mitochondrial therapies.
View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a degenerative genetic myopathy characterized by complete absence of dystrophin. Although the mouse lacks dystrophin, its phenotype is milder compared to DMD patients. The incorporation of a null mutation in the gene led to a more DMD-like phenotype (i.

View Article and Find Full Text PDF

Fibro-adipogenic progenitors (FAPs) are essential in supporting regeneration in skeletal muscle, but in muscle pathologies FAPs the are main source of excess extracellular matrix (ECM) resulting in fibrosis. Fibrotic ECM has altered mechanical and architectural properties, but the feedback onto FAPs of stiffness or ECM properties is largely unknown. In this study, FAPs' sensitivity to their ECM substrate was assessed using collagen coated polyacrylamide to control substrate stiffness and collagen hydrogels to engineer concentration, crosslinking, fibril size, and alignment.

View Article and Find Full Text PDF

Desminopathy is the most common intermediate filament disease in humans. The most frequent mutation causing desminopathy in patients is a R350P DES missense mutation. We have developed a rat model with an analogous mutation in R349P Des.

View Article and Find Full Text PDF

Muscle stem cells (MuSCs) are essential for the robust regenerative capacity of skeletal muscle. However, in fibrotic environments marked by abundant collagen and altered collagen organization, the regenerative capability of MuSCs is diminished. MuSCs are sensitive to their extracellular matrix environment but their response to collagen architecture is largely unknown.

View Article and Find Full Text PDF

Key Points: The amount of fibrotic material in dystrophic mouse muscles relates to contractile function, but not passive function. Collagen fibres in skeletal muscle are associated with increased passive muscle stiffness in fibrotic muscles. The alignment of collagen is independently associated with passive stiffness in dystrophic skeletal muscles.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a complex mixture composed of fibrillar collagens as well as additional protein and carbohydrate components. Proteoglycans (PGs) contribute to the heterogeneity of the ECM and play an important role in its structure and function. While the small leucine rich proteoglycans (SLRPs), including decorin and lumican, have been studied extensively as mediators of collagen fibrillogenesis and organization, the function of large matrix PGs in collagen matrices is less well known.

View Article and Find Full Text PDF

Background/aims: Cell migration and extracellular matrix remodeling underlie normal mammalian development and growth as well as pathologic tumor invasion. Skeletal muscle is no exception, where satellite cell migration replenishes nuclear content in damaged tissue and extracellular matrix reforms during regeneration. A key set of enzymes that regulate these processes are matrix metalloproteinases (MMP)s.

View Article and Find Full Text PDF

The maintenance of functional independence is the top priority of patients with chronic kidney disease (CKD). Defects in mitochondrial energetics may compromise physical performance and independence. We investigated associations of the presence and severity of kidney disease with in vivo muscle energetics and the association of muscle energetics with physical performance.

View Article and Find Full Text PDF

: Joint contractures in children with cerebral palsy contain muscle tissue that is mechanically stiffer with higher collagen content than typically developing children. Interestingly, the correlation between collagen content and stiffness is weak. To date, no data are available on collagen types or other extracellular matrix proteins in these muscles, nor any information regarding their function.

View Article and Find Full Text PDF

: Skeletal muscle tissue explants have been cultured and studied for nearly 100 years. These cultures, which retain complex tissue structure in an environment suited to precision manipulation and measurement, have led to seminal discoveries of the extrinsic and intrinsic mechanisms regulating contractility, metabolism and regeneration. This review discusses the two primary models of muscle explant: isolated myofiber and intact muscle.

View Article and Find Full Text PDF

Introduction: Dysferlin loss-of-function mutations cause muscular dystrophy, accompanied by impaired membrane repair and muscle weakness. Growth promoting strategies including insulin-like growth factor 1 (IGF-1) could provide benefit but may cause strength loss or be ineffective. The objective of this study was to determine whether locally increased IGF-1 promotes functional muscle hypertrophy in dysferlin-null (Dysf ) mice.

View Article and Find Full Text PDF

Migration through 3D constrictions can cause nuclear rupture and mislocalization of nuclear proteins, but damage to DNA remains uncertain, as does any effect on cell cycle. Here, myosin II inhibition rescues rupture and partially rescues the DNA damage marker γH2AX, but an apparent block in cell cycle appears unaffected. Co-overexpression of multiple DNA repair factors or antioxidant inhibition of break formation also exert partial effects, independently of rupture.

View Article and Find Full Text PDF

Tissue regeneration at an injured site depends on proliferation, migration, and differentiation of resident stem or progenitor cells, but solid tissues are often sufficiently dense and constricting that nuclei are highly stressed by migration. In this study, constricted migration of myoblastic cell types and mesenchymal stem cells (MSCs) increases nuclear rupture, increases DNA damage, and modulates differentiation. Fewer myoblasts fuse into regenerating muscle in vivo after constricted migration in vitro, and myodifferentiation in vitro is likewise suppressed.

View Article and Find Full Text PDF