Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments.
View Article and Find Full Text PDFBackground: Plants interact with a variety of microorganisms during their life cycle, among which beneficial bacteria deserve special attention. is a beneficial bacterium able to fix nitrogen and promote plant growth. Despite its biotechnological potential, the mechanisms regulating the interaction between and host plants remain unclear.
View Article and Find Full Text PDFPlant growth-promoting bacteria are a promising alternative to improve agricultural sustainability. Gluconacetobacter diazotrophicus is an osmotolerant bacterium able to colonize several plant species, including sugarcane, coffee, and rice. Despite its biotechnological potential, the mechanisms controlling such osmotolerance remain unclear.
View Article and Find Full Text PDFIn this study, a label-free quantitative phosphoproteomic analysis was performed to identify and quantify signaling events related to the acquisition of embryogenic competence in sugarcane. Embryogenic and nonembryogenic calli were compared at the multiplication phase, resulting in the identification of 163 phosphoproteins unique to embryogenic calli, 9 unique to nonembryogenic calli, and 51 upregulated and 40 downregulated in embryogenic calli compared to nonembryogenic calli. Data are available via ProteomeXchange with identifier PXD018054.
View Article and Find Full Text PDFSomatic embryogenesis is an important biological process in several plant species, including sugar cane. Proteomics approaches have shown that H pumps are differentially regulated during somatic embryogenesis; however, the relationship between H flux and embryogenic competence is still unclear. This work aimed to elucidate the association between extracellular H flux and somatic embryo maturation in sugar cane.
View Article and Find Full Text PDFEfficient protocols for somatic embryogenesis of papaya ( L.) have great potential for selecting elite hybrid genotypes. Addition of polyethylene glycol (PEG), a nonplasmolyzing osmotic agent, to a maturation medium increases the production of somatic embryos in .
View Article and Find Full Text PDFSalt stress is one of the most common stresses in agricultural regions worldwide. In particular, sugarcane is affected by salt stress conditions, and no sugarcane cultivar presently show high productivity accompanied by a tolerance to salt stress. Proteomic analysis allows elucidation of the important pathways involved in responses to various abiotic stresses at the biochemical and molecular levels.
View Article and Find Full Text PDF