Publications by authors named "Lucas P Medeiros"

Understanding how communities respond to perturbations requires us to consider not only changes in the abundance of individual species but also correlated changes that can emerge through interspecific effects. However, our knowledge of this phenomenon is mostly constrained to situations where interspecific effects are fixed. Here, we introduce a framework to disentangle the impact of species correlated responses on community sensitivity to perturbations when interspecific effects change over time due to cyclic or chaotic population dynamics.

View Article and Find Full Text PDF

Managing ecological communities requires fast detection of species that are sensitive to perturbations. Yet, the focus on recovery to equilibrium has prevented us from assessing species responses to perturbations when abundances fluctuate over time. Here, we introduce two data-driven approaches (expected sensitivity and eigenvector rankings) based on the time-varying Jacobian matrix to rank species over time according to their sensitivity to perturbations on abundances.

View Article and Find Full Text PDF

Resilience is broadly understood as the ability of an ecological system to resist and recover from perturbations acting on species abundances and on the system's structure. However, one of the main problems in assessing resilience is to understand the extent to which measures of recovery and resistance provide complementary information about a system. While recovery from abundance perturbations has a strong tradition under the analysis of dynamical stability, it is unclear whether this same formalism can be used to measure resistance to structural perturbations (e.

View Article and Find Full Text PDF

AbstractDespite the rich biodiversity found in nature, it is unclear to what extent some combinations of interacting species, while conceivable in a given place and time, may never be realized. Yet solving this problem is important for understanding the role of randomness and predictability in the assembly of ecological communities. Here we show that the specific combinations of interacting species that emerge from the ecological dynamics within regional species pools are not all equally likely to be seen; rather, they are among the most likely to persist under changing environments.

View Article and Find Full Text PDF

The persistence of a species in a given place not only depends on its intrinsic capacity to consume and transform resources into offspring, but also on how changing environmental conditions affect its growth rate. However, the complexity of factors has typically taken us to choose between understanding and predicting the persistence of species. To tackle this limitation, we propose a probabilistic approach rooted on the statistical concepts of ensemble theory applied to statistical mechanics and on the mathematical concepts of structural stability applied to population dynamics models - what we call structural forecasting.

View Article and Find Full Text PDF

Biodiversity loss is a hallmark of our times, but predicting its consequences is challenging. Ecological interactions form complex networks with multiple direct and indirect paths through which the impacts of an extinction may propagate. Here we show that accounting for these multiple paths connecting species is necessary to predict how extinctions affect the integrity of ecological networks.

View Article and Find Full Text PDF

Short-term forecasts of nonlinear dynamics are important for risk-assessment studies and to inform sustainable decision-making for physical, biological and financial problems, among others. Generally, the accuracy of short-term forecasts depends upon two main factors: the capacity of learning algorithms to generalize well on unseen data and the intrinsic predictability of the dynamics. While generalization skills of learning algorithms can be assessed with well-established methods, estimating the predictability of the underlying nonlinear generating process from empirical time series remains a big challenge.

View Article and Find Full Text PDF

Ecological interactions shape adaptations through coevolution not only between pairs of species but also through entire multispecies assemblages. Local coevolution can then be further altered through spatial processes that have been formally partitioned in the geographic mosaic theory of coevolution. A major current challenge is to understand the spatial patterns of coadaptation that emerge across ecosystems through the interplay between gene flow and selection in networks of interacting species.

View Article and Find Full Text PDF

Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction.

View Article and Find Full Text PDF

Objective: To assess the incidence rate and severity of depressive symptoms in different time points (12, 24 and 48 weeks) in Brazilian patients with HCV treated with PEG IFN plus ribavirin.

Methods: We conducted an observational prospective study using the Beck Depression Inventory (BDI) and the Center for Epidemiologic Studies Depression Scale (CES-D).

Results: Fifty patients were included.

View Article and Find Full Text PDF