Axially assembled aluminum(III) porphyrin based dyads and triads have been constructed to investigate the factors that govern the energy and electron transfer processes in a perpendicular direction to the porphyrin plane. In the aluminum(III) porphyrin-free-base porphyrin (AlPor-Ph-H2Por) dyad, the AlPor occupies the basal plane, while the free-base porphyrin (H2Por) with electron withdrawing groups resides in the axial position through a benzoate spacer. The NMR, UV-visible absorption, and steady-state fluorescence studies confirm that the coordination of pyridine appended tetrathiafulvalene (TTF) derivative (TTF-py or TTF-Ph-py) to the dyad in noncoordinating solvents afford vertically arranged supramolecular self-assembled triads (TTF-py→AlPor-Ph-H2Por and TTF-Ph-py→AlPor-Ph-H2Por).
View Article and Find Full Text PDFSeparation of polycyclic aromatic sulfur heterocycles among themselves and also from interferents in petrochemical matrices is a challenging task because of their low concentration, matrix complexity, and also due to the presence of polyaromatic hydrocarbons, as they present similar physico-chemical properties. Therefore, the objective of this work was preparation, characterization, and application of a stationary phase for separation of these compounds in a heavy gas oil sample and their identification by comprehensive two-dimensional gas chromatography. The stationary phase was prepared by grafting mercaptopropyltrimethoxisilane onto a silica surface, followed by palladium(II) chloride immobilization.
View Article and Find Full Text PDFJ Chromatogr A
January 2013
The separation of the organic sulfur compounds (OSC) of petroleum or its heavy fractions is a critical step and is essential for the correct characterization of these compounds, especially due to similar physical and chemical properties of polycyclic aromatic sulfur heterocycles (PASH) and polycyclic aromatic hydrocarbons (PAH). This similarity results in coelutions among PAH and PASH and for this reason former steps of fractionation are required before gas chromatographic analysis. The objective of this study was to evaluate the potential of GC×GC for the separation and identification of OSC in a heavy gas oil sample without fractionation, after pre-fractionation in an alumina column and also after fractionation process.
View Article and Find Full Text PDF