Calmodulin (CaM) is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells in a calcium-dependent manner. CaM has been proposed to be functionally distinct from the S100 proteins, a related family of eukaryotic calcium-binding proteins. Previously, it was demonstrated that peptides derived from the actin-capping protein, TRTK12, and the tumor-suppressor protein, p53, interact with multiple members of the S100 proteins.
View Article and Find Full Text PDFThe S100 protein family consists of small, dimeric proteins that exert their biological functions in response to changing calcium concentrations. S100B is the best-studied member and has been shown to interact with more than 20 binding partners in a calcium-dependent manner. The TRTK12 peptide, derived from the consensus binding sequence for S100B, has previously been found to interact with S100A1 and has been proposed to be a general binding partner of the S100 family.
View Article and Find Full Text PDFS100B is a member of the S100 subfamily of EF-hand proteins that has been implicated in malignant melanoma and neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease. Calcium-induced conformational changes expose a hydrophobic binding cleft, facilitating interactions with a wide variety of nuclear, cytoplasmic, and extracellular target proteins. Previously, peptides derived from CapZ, p53, NDR, HDM2, and HDM4 have been shown to interact with S100B in a calcium-dependent manner.
View Article and Find Full Text PDFThe thermodynamic properties of unfolding of the Trp-cage mini protein in the presence of various concentrations of urea have been characterized using temperature-induced unfolding monitored by far-UV circular dichroism spectroscopy. Analysis of the data using a two-state model allowed the calculation of the Gibbs energy of unfolding at 25 degrees C as a function of urea concentration. This in turn was analyzed by the linear extrapolation model that yielded the dependence of Gibbs energy on urea concentration, i.
View Article and Find Full Text PDF