Publications by authors named "Lucas Moser"

Surface reconstructions play a crucial role in surface science because of their influence on the adsorption and arrangement of molecules or nanoparticles. On the Au(111) surface, the herringbone reconstruction presents favorable anchoring at the elbow sites, where the highest reactivity is found. In this work, we deposited large organic perchlorinated molecules on a Au(111) surface via high-vacuum electrospray deposition.

View Article and Find Full Text PDF

Conformational isomers are stereoisomers that can interconvert over low potential barriers by rotation around a single bond. However, such bond rotation is hampered by geometrical constraints when molecules are adsorbed on surfaces. Here, we show that the adsorption of 4,4'-bis(4-carboxyphenyl)-6,6'-dimethyl-2,2'-bipyridine molecules on surfaces leads to the appearance of prochiral single molecules on NiO(001) and to enantiopure supramolecular domains on Au(111) surfaces containing the transoid-molecule conformation.

View Article and Find Full Text PDF

Plasma catalysis has drawn attention in the past few decades as a possible alternative to the Haber-Bosch process for ammonia production. In particular, radio frequency plasma assisted catalysis has the advantage of its adaptability to the industrial scale. However, in the past years, very few experimental studies have focused on the synthesis of ammonia from nitrogen/hydrogen radio frequency plasma.

View Article and Find Full Text PDF

In this study X-ray Photoelectron Spectroscopy and Ultraviolet Photoelectron Spectroscopy were combined to investigate the effect of oxygen incorporation on the valence band behaviour of ZrO. The Auger transitions involving valence bands are found to mimic the self-folded density of state measured using Ultraviolet Photoelectron Spectroscopy. The valence band once constructed in a sub-oxide form, stays at a fixed energy position despite the change in the stoichiometry.

View Article and Find Full Text PDF

Chemical vapor deposition (CVD) is a powerful technique to produce graphene for large-scale applications. Polymer-assisted wet transfer is commonly used to move the graphene onto silicon substrates, but the resulting devices tend to exhibit p-doping, which decreases the device quality and reproducibility. In an effort to better understand the origin of this effect, we coated graphene with n-methyl-2-pyrrolidone (NMP) and hexamethyldisilazane (HMDS) molecules that exhibit negligible charge transfer to graphene but bind more strongly to graphene than ambient adsorbents.

View Article and Find Full Text PDF

The effect of helium on the tungsten microstructure was investigated first by exposure to a radio frequency driven helium plasma with fluxes of the order of 1 × 10(19) m(-2) s(-1) and second by helium incorporation via magnetron sputtering. Roughening of the surface and the creation of pinholes were observed when exposing poly- and nanocrystalline tungsten samples to low-flux plasma. A coating process using an excess of helium besides argon in the process gas mixture leads to a porous thin film and a granular surface structure whereas gas mixture ratios of up to 50% He/Ar (in terms of their partial pressures) lead to a dense structure.

View Article and Find Full Text PDF